In learning-to-learn the goal is to infer a learning algorithm that works well on a class of tasks sampled from an unknown meta distribution. In contrast to previous work on batch learning-tolearn, we consider a scenario where tasks are presented sequentially and the algorithm needs to adapt incrementally to improve its performance on future tasks. Key to this setting is for the algorithm to rapidly incorporate new observations into the model as they arrive, without keeping them in memory. We focus on the case where the underlying algorithm is Ridge Regression parameterized by a positive semidefinite matrix. We propose to learn this matrix by applying a stochastic strategy to minimize the empirical error incurred by Ridge Regression on future tasks sampled from the meta distribution. We study the statistical properties of the proposed algorithm and prove non-asymptotic bounds on its excess transfer risk, that is, the generalization performance on new tasks from the same meta distribution. We compare our online learning-to-learn approach with a state of the art batch method, both theoretically and empirically.
Trace norm regularization is a widely used approach for learning low rank matrices. A standard optimization strategy is based on formulating the problem as one of low rank matrix factorization which, however, leads to a non-convex problem. In practice this approach works well, and it is often computationally faster than standard convex solvers such as proximal gradient methods. Nevertheless, it is not guaranteed to converge to a global optimum, and the optimization can be trapped at poor stationary points. In this paper we show that it is possible to characterize all critical points of the non-convex problem. This allows us to provide an efficient criterion to determine whether a critical point is also a global minimizer. Our analysis suggests an iterative meta-algorithm that dynamically expands the parameter space and allows the optimization to escape any non-global critical point, thereby converging to a global minimizer. The algorithm can be applied to problems such as matrix completion or multitask learning, and our analysis holds for any random initialization of the factor matrices. Finally, we confirm the good performance of the algorithm on synthetic and real datasets.
<abstract><p>Trace norm regularization is a widely used approach for learning low rank matrices. A standard optimization strategy is based on formulating the problem as one of low rank matrix factorization which, however, leads to a non-convex problem. In practice this approach works well, and it is often computationally faster than standard convex solvers such as proximal gradient methods. Nevertheless, it is not guaranteed to converge to a global optimum, and the optimization can be trapped at poor stationary points. In this paper we show that it is possible to characterize all critical points of the non-convex problem. This allows us to provide an efficient criterion to determine whether a critical point is also a global minimizer. Our analysis suggests an iterative meta-algorithm that dynamically expands the parameter space and allows the optimization to escape any non-global critical point, thereby converging to a global minimizer. The algorithm can be applied to problems such as matrix completion or multitask learning, and our analysis holds for any random initialization of the factor matrices. Finally, we confirm the good performance of the algorithm on synthetic and real datasets.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.