Systemic IL-15, IFN-g, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients Graphical abstract Highlights d BNT162b2 mRNA vaccine induces a cytokine signature featuring IL-15, IFN-g, and CXCL10 d mRNA-vaccine-induced IFN-g and IL-15 correlate with spike antibody response d Strong cytokine signature upon a single vaccination of convalescent persons d Stronger cytokine induction upon booster vaccination in naive persons
α-Synuclein (αSyn) is the major gene linked to sporadic Parkinson's disease (PD), whereas the G209A (p.A53T) αSyn mutation causes a familial form of PD characterized by early onset and a generally severe phenotype, including nonmotor manifestations. Here we generated de novo induced pluripotent stem cells (iPSCs) from patients harboring the p.A53T mutation and developed a robust model that captures PD pathogenic processes under basal conditions. iPSC-derived mutant neurons displayed novel disease-relevant phenotypes, including protein aggregation, compromised neuritic outgrowth, and contorted or fragmented axons with swollen varicosities containing αSyn and Tau. The identified neuropathological features closely resembled those in brains of p.A53T patients. Small molecules targeting αSyn reverted the degenerative phenotype under both basal and induced stress conditions, indicating a treatment strategy for PD and other synucleinopathies. Furthermore, mutant neurons showed disrupted synaptic connectivity and widespread transcriptional alterations in genes involved in synaptic signaling, a number of which have been previously linked to mental disorders, raising intriguing implications for potentially converging disease mechanisms.
HSP90 is a ubiquitously expressed molecular chaperone that controls the folding, assembly, intracellular disposition, and proteolytic turnover of many proteins, most of which are involved in signal transduction processes. Recently, a surface form of HSP90 has been identified and associated with cell migration events. In this paper, we explore the interaction of surface HSP90 with HER-2, a receptor-like glycoprotein and member of the ErbB family of receptor tyrosine kinases that play central roles in cellular proliferation, differentiation, and migration as well as in cancer progress. The involvement of HSP90 in the regulation of HER-2 has been attributed so far to receptor stabilization via interaction with its cytoplasmic kinase domain. Here we present evidence, using glutathione S-transferase pull-down and transfection assays, for a novel interaction between surface HSP90 and the extracellular domain of HER-2. Specific disruption of this interaction using mAb 4C5, a function-blocking monoclonal antibody against HSP90, inhibits cell invasion accompanied by altered actin dynamics in human breast cancer cells under ligand stimulation conditions with heregulin. Additionally, disruption of surface HSP90/HER-2 interaction leads to inhibition of heregulin-induced HER-2-HER-3 heterodimer formation, reduced HER-2 phosphorylation, and impaired downstream kinase signaling. Interestingly, this disruption does not affect HER-2 internalization. Our data suggest that surface HSP90 is involved in heregulin-induced HER-2 activation and signaling, leading to cytoskeletal rearrangement, essential for cell invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.