Uncovering the functional relationship between temporal lobe amnesia and diencephalic amnesia depends on determining the role of the fornix, the major interlinking fiber tract. In this study relating fornix volume with memory, we made magnetic resonance imaging-based volume estimates of 13 brain structures in 38 individuals with surgically removed colloid cysts. Fornix status was assessed directly by overall volume and indirectly by mammillary body volume (which atrophies after fornix damage). Mammillary body volume significantly correlated with 13 out of 14 tests of episodic memory recall, but correlated poorly with recognition memory. Furthermore, as the volumes of the left fornix and the left mammillary bodies decreased, the difference between recall and recognition scores increased. No other structure was consistently associated with memory. These findings support models of diencephalic memory mechanisms that require hippocampal inputs for recall, but not for key elements of recognition.
Previous work (Mayes et al., Hippocampus 12:325-340, 2002) found that patient YR, who suffered a selective bilateral lesion to the hippocampus in 1986, showed relatively preserved verbal and visual item recognition memory in the face of clearly impaired verbal and visual recall. In this study, we found that YR's Yes/No as well as forced-choice recognition of both intra-item associations and associations between items of the same kind was as well preserved as her item recognition memory. In contrast, YR was clearly impaired, and more so than she was on the above kinds of recognition, at recognition of associations between different kinds of information. Thus, her recognition memory for associations between objects and their locations, words and their temporal positions, abstract visual items or words and their temporal order, animal pictures and names of professions, faces and voices, faces and spoken names, words and definitions, and pictures and sounds, was clearly impaired. Several of the different information associative recognition tests at which YR was impaired could be compared with related item or inter-item association recognition tests of similar difficulty that she performed relatively normally around the same time. It is suggested that YR's familiarity memory for items, intra-item associations, and associations between items of the same kind was mediated by her intact medial temporal lobe cortices and was preserved, whereas her hippocampally mediated recall/recollection of these kinds of information was impaired. It is also suggested that the components of associations between different kinds of information are represented in distinct neocortical regions and that initially they only converge for memory processing within the hippocampus. No familiarity memory may exist in normal subjects for such associations, and, if so, YR's often chance recognition occurred because of her severe recall/recollection deficit. Conflicting data and views are discussed, and the way in which recall as well as item and associative recognition need to be systematically explored in patients with apparently selective hippocampal lesions, in order to resolve existing conflicts, is outlined.
Event-related potentials (ERPs) were recorded during a recognition memory test for previously studied visual objects. Some studied objects were paired with the same context (landscape scenes) as at study, some were superimposed on a different studied context, and some were paired with new contexts. Unstudied objects were paired with either a studied or a new context. Three ERP memory effects were observed: an early effect elicited by all stimuli containing at least one studied component; a second effect elicited only by stimuli in which both object and context had been studied; and a third effect elicited by stimuli containing a studied object. Thus, test stimuli engaged three distinct kinds of memory-related neural activity which differed in their specificity for task-relevant features.
To understand recognition memory, the detection of stimulus repetition, it first is necessary to resolve the debate between 2 fundamentally different models of recognition. Contemporary single-process models assume that recognition memory relies solely on the neural system required for the recall of prior events. Dual-process models assume that recognition comprises 2 independent forms of memory: one supports recall, and the other detects repeated stimuli by signaling their familiarity, the feeling of previous occurrence without the recall of any associated information. These 2 models were contrasted in patients who had undergone surgical removal of a colloid cyst, a condition associated with memory loss when accompanied by fornix and/or mammillary body atrophy. Comparisons were made between 2 groups of 9 patients that differed only with respect to the extent of mammillary body atrophy. Only the more atrophied group was impaired on tests of recall, but both groups showed normal recognition levels on a task that equates recall and recognition performance in normal participants. To explore the nature of this spared recognition, we estimated recall-based recognition and familiarity-based recognition using 3 distinct methods: self-report, receiver operating characteristics, and structural equation modeling. All 3 methods showed impaired recall-based recognition accompanied by intact familiarity in the most atrophied group, as predicted only by dual-process models. When structural equation modeling was applied to all 62 colloid cyst patients, the recall/familiarity dualprocess model best explained the patients' memory pattern. The convergent evidence that mammillary body atrophy impairs recall but spares familiarity-based recognition appears irreconcilable with single-process models.amnesia ͉ colloid cyst ͉ fornix ͉ mammillary body ͉ recognition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.