Key points We report that the peroxisome proliferator‐activated receptor (PPAR)γ coactivator 1‐α (PGC‐1α)/PPARβ axis is a crucial mediator of uncoupling protein 3 (UCP3) expression in skeletal muscle cells via the transactivativation of a distal PPAR response element at the Ucp3 gene promoter. This mechanism is activated during the myogenic process and by high concentrations of fatty acids independent of PGC‐1α protein levels. Ucp3 is essential for PGC‐1α‐induced oxidative capacity and the adaptive mitochondrial response to fatty acid exposure. These findings provide further evidence for the broad spectrum of the coactivator action in mitochondrial homeostasis, positioning the PGC‐1ɑ/PPARβ axis as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells. Abstract Uncoupling protein 3 (UCP3) has an essential role in fatty acid metabolism and mitochondrial redox regulation in skeletal muscle. However, the molecular mechanisms involved in the expression of Ucp3 are poorly known. In the present study, we show that the peroxisome proliferator‐activated receptor (PPAR)γ coactivator 1‐α (PGC‐1α)/PPARβ axis is a crucial mediator of Ucp3 expression in skeletal muscle cells. In silico analysis of the UCP3 promoter and quantitative chromatin immunoprecipitation experiments revealed that the induction of the UCP3 transcript is mediated by the transactivation of a distal PPAR response element at the Ucp3 gene promoter by the coactivator PGC‐1α. This mechanism is activated during myogenesis and during metabolic stress induced by fatty acids independent of PGC‐1α protein levels. We also provide evidence that Ucp3 is essential for PGC‐1α‐induced oxidative capacity. Taken together, our results highlight PGC‐1ɑ/PPARβ as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells.
The role of microRNAs in metabolic diseases has been recognized and modulation of them could be a promising strategy to treat obesity and obesity-related diseases. The major purpose of this study was to test the hypothesis that intramuscular miR-1 precursor replacement therapy could improve metabolic parameters of mice fed a high-fat diet. To this end, we first injected miR-1 precursor intramuscularly in high-fat diet-fed mice and evaluated glucose tolerance, insulin sensitivity, and adiposity. miR-1-treated mice did not lose weight but had improved insulin sensitivity measured by insulin tolerance test. Next, using an in vitro model of insulin resistance by treating C2C12 cells with palmitic acid (PA), we overexpressed miR-1 and measured p-Akt content and the transcription levels of a protein related to fatty acid oxidation. We found that miR-1 could not restore insulin sensitivity in C2C12 cells, as indicated by p-Akt levels and that miR-1 increased expression of Pgc1a and Cpt1b in PA-treated cells, suggesting a possible role of miR-1 in mitochondrial respiration. Finally, we analyzed mitochondrial oxygen consumption in primary skeletal muscle cells treated with PA and transfected with or without miR-1 mimic. PA-treated cells showed reduced basal respiration, oxygen consumption rate-linked ATP production, maximal and spare capacity, and miR-1 overexpression could prevent impairments in mitochondrial respiration. Our data suggest a role of miR-1 in systemic insulin sensitivity and a new function of miR-1 in regulating mitochondrial respiration in skeletal muscle.
In the present study we investigated the participation of hepatic peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in the metabolic programming of newborn rats exposed in utero to dexamethasone (DEX). On the 21st day of life, fasted offspring born to DEX-treated mothers displayed increased conversion of pyruvate into glucose with simultaneous upregulation of PEPCK (phosphoenolpyruvate carboxykinase) and G6Pase (glucose-6-phosphatase). Increased oxidative phosphorylation, higher ATP/ADP ratio and mitochondrial biogenesis and lower pyruvate levels were also found in the progeny of DEX-treated mothers. On the other hand, the 21-day-old progeny of DEX-treated mothers had increased hepatic triglycerides (TAG) and lower CPT-1 activity when subjected to short-term fasting. At the mechanistic level, rats exposed in utero to DEX exhibited increased hepatic PGC-1α protein content with lower miR-29a-c expression. Increased PGC-1α content was concurrent with increased association to HNF-4α and NRF1 and reduced PPARα expression. The data presented herein reveal that changes in the transcription machinery in neonatal liver of rats born to DEX-treated mothers leads to an inflexible metabolic response to fasting. Such programming is hallmarked by increased oxidative phosphorylation of pyruvate with impaired FFA oxidation and hepatic TAG accumulation.
Background In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. Lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine-α-oxidase, a flavoenzyme that degrades lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. Results The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. Conclusions The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.