Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people and deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brainpredicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data.Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brainpredicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a significantly heritable phenotype for all models and input data (h 2 = 0.50-0.84). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.98). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77).2 Brain-predicted age represents an accurate, highly reliable and genetically-valid phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.
The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).
The quest for small drug-like compounds that selectively inhibit the function of biological targets has always been a major focus in the pharmaceutical industry and in academia as well. High-throughput screening of compound libraries requires time, cost and resources. Therefore, the use of alternative methods is necessary for facilitating lead discovery. Computational techniques that dock small molecules into macromolecular targets and predict the affinity and activity of the small molecule are widely used in drug design and discovery, and have become an integral part of the industrial and academic research. In this review, we present an overview of some state-of-the-art technologies in modern drug design that have been developed for expediting the search for novel drug candidates.
An increasing array of biomedical and computer vision applications requires the predictive modeling of complex data, for example images and shapes. The main challenge when predicting such objects lies in the fact that they do not comply to the assumptions of Euclidean geometry. Rather, they occupy non-linear spaces, a.k.a. manifolds, where it is difficult to define concepts such as coordinates, vectors and expected values. In this work, we construct a non-parametric predictive methodology for manifold-valued objects, based on a distance modification of the Random Forest algorithm. Our method is versatile and can be applied both in cases where the response space is a well-defined manifold, but also when such knowledge is not available. Model fitting and prediction phases only require the definition of a suitable distance function for the observed responses. We validate our methodology using simulations and apply it on a series of illustrative image completion applications, showcasing superior predictive performance, compared to various established regression methods.
We propose a non-parametric regression methodology, Random Forests on Distance Matrices (RFDM), for detecting genetic variants associated to quantitative phenotypes, obtained using neuroimaging techniques, representing the human brain's structure or function. RFDM, which is an extension of decision forests, requires a distance matrix as the response that encodes all pair-wise phenotypic distances in the random sample. We discuss ways to learn such distances directly from the data using manifold learning techniques, and how to define such distances when the phenotypes are non-vectorial objects such as brain connectivity networks. We also describe an extension of RFDM to detect espistatic effects while keeping the computational complexity low. Extensive simulation results and an application to an imaging genetics study of Alzheimer's Disease are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.