.We present the characterization of the charge-coupled device (CCD) system developed for the ARIES Devasthal faint object spectrograph (ADFOSC) instrument on the 3.6 m Devasthal optical telescope (DOT). We describe various experiments performed to tune the CCD controller parameters to obtain optimum performance in single and four-port readout modes. Different methodologies employed for characterizing the performance parameters of the CCD, including bias stability, noise, defects, linearity, and gain, are described here. The CCD has grade-0 characteristics at temperatures close to its nominal operating temperature of −120 ° C. The overall system is linear with a regression coefficient of 0.9999, readout noise of six electrons, and a gain value close to unity. We demonstrate a method to calculate the dark signal using the gradient in the bias frames at lower temperatures. Using the optimized setting, we verify the performance of the CCD detector system on-sky using the ADFOSC instrument mounted on the 3.6 m DOT. Some science targets were observed to evaluate the detector’s performance in both imaging and spectroscopic modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.