The genetic structure of six Iberian populations of the whitefly Bemisia tabaci, two of them biotype Q, one biotype B, and the other three a mixture of both, has been studied using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). A total of 336 individuals was completely discriminated by means of 234 scored bands. Separate analyses of molecular variance of haploid males and diploid females using the pairwise number of differences between haplotypes showed that biotypes contribute significantly more to the observed variability than populations within biotypes. On average, gene flow between two biotypes of the same population is lower than between populations of identical biotypes. On the basis of these results and the nondetection under natural conditions of a single hybrid, we consider that both biotypes are genetically isolated under the ecological conditions prevailing in the south Iberian Peninsula. All populations of biotype Q presented similar values of intrapopulational diversity, which were higher than the values shown by populations of biotype B.
The tomato leaf miner, Tuta absoluta (Lepidoptera) is a significant pest of tomatoes that has undergone a rapid expansion in its range during the past six years and is now present across Europe, North Africa and parts of Asia. One of the main means of controlling this pest is through the use of chemical insecticides. In the current study insecticide bioassays were used to determine the susceptibility of five T. absoluta strains established from field collections from Europe and Brazil to pyrethroids. High levels of resistance to λ cyhalothrin and tau fluvalinate were observed in all five strains tested. To investigate whether pyrethroid resistance was mediated by mutation of the para-type sodium channel in T. absoluta the IIS4-IIS6 region of the para gene, which contains many of the mutation sites previously shown to confer knock down (kdr)-type resistance to pyrethroids across a range of different arthropod species, was cloned and sequenced. This revealed that three kdr/super-kdr-type mutations (M918T, T929I and L1014F), were present at high frequencies within all five resistant strains at known resistance 'hot-spots'. This is the first description of these mutations together in any insect population. High-throughput DNA-based diagnostic assays were developed and used to assess the prevalence of these mutations in 27 field strains from 12 countries. Overall mutant allele frequencies were high (L1014F 0.98, M918T 0.35, T929I 0.60) and remarkably no individual was observed that did not carry kdr in combination with either M918T or T929I. The presence of these mutations at high frequency in T. absoluta populations across much of its range suggests pyrethroids are likely to be ineffective for control and supports the idea that the rapid expansion of this species over the last six years may be in part mediated by the resistance of this pest to chemical insecticides.
In contrast to previous reports, high rates of efficacy exist for numerous insecticide classes against B. tabaci Q-biotype populations in these intensive agricultural regions of south-eastern Spain. This probably reflects the recent and significant reductions in exposure that have resulted from a wider uptake of IPM technologies and strategies. However, the continued presence of resistance genes also suggests that a reversion to levels of high insecticide exposure could result in a rapid selection for resistance.
Biological control is an efficient pest control method but there are still limitations that are hindering its wider adoption. Genetic improvement of biological control agents (BCAs) can help to overcome these constraints, but the choice of key attributes for better performance that need to be selected is still an open question. Several characteristics have been suggested but the harsh reality is that selective breeding of BCAs has received a lot of attention but resulted in very little progress. Identifying the appropriate traits to be prioritized may be the first step to reverse this situation. In our opinion, the best way is to look at the factors limiting the performance of key BCAs, especially generalist predators (pesticide compatibility, prey-density dependence, non-suitable crops, and extreme environmental conditions), and according to these challenges, to choose the attributes that would allow BCAs to overcome those limitations. The benefits of selection for higher resistance to toxins, whether artificially applied (pesticides) or plant produced (plant defenses); increased fitness when feeding on non-prey food (supplemented or plant-derived); and better adaptation to extreme temperature and humidity are discussed. In conclusion, genetic improvement of BCAs can bring about new opportunities to biocontrol industry and users to enhance biocontrol resilience.
High genetic homogeneity was detected in T. absoluta populations from the Mediterranean Basin and South America, based on mtCOI and ITS rDNA sequence analysis. A single genetic type was identified in this pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.