Abstract. We present a new algorithm for unbound (real life) docking of molecules, whether protein-protein or protein-drug. The algorithm carries out rigid docking, with surface variability/flexibility implicitly addressed through liberal intermolecular penetration. The high efficiency of the algorithm is the outcome of several factors: ( ) focusing initial molecular surface fitting on localized, curvature based surface patches; ( ) use of Geometric Hashing and Pose Clustering for initial transformation detection; ( ) accurate computation of shape complementarity utilizing the Distance Transform; ( ) efficient steric clash detection and geometric fit scoring based on a multi-resolution shape representation; and ( ) utilization of biological information by focusing on hot spot rich surface patches. The algorithm has been implemented and applied to a large number of cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.