Objective. Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based 'interlaced squares' stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. Significance. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.
Objective: Within this work an auditory P300 brain-computer interface (BCI) based on tone stream segregation, which allows for binary decisions, was developed and evaluated. Materials and methods: Two tone streams consisting of short beep tones with infrequently appearing deviant tones at random positions were used as stimuli. This paradigm was evaluated in 10 healthy subjects and applied to 12 patients in a minimally conscious state (MCS) at clinics in Graz, Würzburg, Rome, and Liège. A stepwise linear discriminant analysis (SWLDA) classifier with 10 × 10 cross-validation was used to detect the presence of any P300 and to investigate attentional modulation of the P300 amplitude. Results:The results for healthy subjects were promising and most classification results were better than random. However, for MCS patients only a small number of classification results were above chance level and none of the results were sufficient for communication purposes. Nevertheless, signs of consciousness were detected in most patients, not on a single-trial basis, but after averaging of corresponding data segments and computing significant differences. These significant results, however, strongly varied across sessions and conditions. Conclusion: This work shows the transition of a paradigm from healthy subjects to MCS patients. Promising results with healthy subjects are, however, no guarantee of good results with patients. Therefore, more investigations are required before any definite conclusions about the usability of this paradigm for MCS patients can be drawn. Nevertheless, this paradigm might offer an opportunity to support bedside clinical assessment of MCS patients and eventually, to provide them with a means of communication.
Background. Despite recent evidence suggesting that some severely brain-injured patients retain some capacity for topdown processing (covert cognition), the degree of sparing is unknown. Objective. Top-down attentional processing was assessed in patients in minimally conscious (MCS) and vegetative states (VS) using an active event-related potential (ERP) paradigm. Methods. A total of 26 patients were included (38 ± 12 years old, 9 traumatic, 21 patients >1 year postonset): 8 MCS+, 8 MCS−, and 10 VS patients. There were 14 healthy controls (30 ± 8 years old). The ERP paradigm included (1) a passive condition and (2) an active condition, wherein the participant was instructed to voluntarily focus attention on his/her own name. In each condition, the participant's own name was presented 100 times (ie, 4 blocks of 25 stimuli). Results. In 5 MCS+ patients as well as in 3 MCS− patients and 1 VS patient, an enhanced P3 amplitude was observed in the active versus passive condition. Relative to controls, patients showed a response that was (1) widely distributed over frontoparietal areas and (2) not present in all blocks (3 of 4). In patients with covert cognition, the amplitude of the response was lower in frontocentral electrodes compared with controls but did not differ from that in the MCS+ group. Conclusion. The results indicate that volitional top-down attention is impaired in patients with covert cognition. Further investigation is crucially needed to better understand top-down cognitive functioning in this population because this may help refine brain-computer interface-based communication strategies.
The findings confirm the importance of using a mirror to assess visual pursuit in patients in MCS and of initiating testing using the horizontal plane, specifically in patients in MCS- and those in chronic setting. Assessment should then be done on the vertical plane if visual pursuit is not detected on the horizontal plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.