Synthetic water-soluble polymers, well-known refractory pollutants, are abundant in wastewater effluents since they are extensively used in industry in a wide range of applications. These polymers can be effectively degraded by advanced oxidation processes (AOPs). This entry thoroughly covers the development of the photochemical kinetic model of the polyvinyl alcohol (PVA) degradation in UV/ H 2 O 2 advanced oxidation batch process that describes the disintegration of the polymer chains in which the statistical moment approach is considered. The reaction mechanism used to describe the photo-degradation of polymers comprises photolysis, polymer chain scission, and mineralization reactions. The impact of operating conditions on the process performance is evaluated. Characterization of the polymer average molecular weights, total organic carbon, and hydrogen peroxide concentrations as essential factors in developing a reliable photochemical model of the UV/H 2 O 2 process is discussed. The statistical moment approach is applied to model the molar population balance of live and dead polymer chains taking into account the probabilistic chain scissions of the polymer. The photochemical kinetic model provides a comprehensive understanding of the impact of the design and operational variables.
The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.