Although hepatocellular carcinoma (HCC) has been subjected to continuous investigation and its symptoms are well known, early-stage diagnosis of this disease remains difficult and the survival rate after diagnosis is typically very low (3–5%). Early and accurate detection of metabolic changes in the sera of patients with liver cirrhosis can help improve the prognosis of HCC and lead to a better understanding of its mechanism at the molecular level, thus providing patients with in-time treatment of the disease. In this study, we compared metabolite levels in sera of 40 HCC patients and 49 cirrhosis patients from Egypt by using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UPLC-QTOF MS). Following data preprocessing, the most relevant ions in distinguishing HCC cases from cirrhotic controls are selected by statistical methods. Putative metabolite identifications for these ions are obtained through mass-based database search. The identities of some of the putative identifications are verified by comparing their MS/MS fragmentation patterns and retention times with those from authentic compounds. Finally, the serum samples are reanalyzed for quantitation of selected metabolites along with other metabolites previously selected as candidate biomarkers of HCC. This quantitation was performed using isotope dilution by selected reaction monitoring (SRM) on a triple quadrupole linear ion trap (QqQLIT) coupled to UPLC. Statistical analysis of the UPLC-QTOF data identified 274 monoisotopic ion masses with statistically significant differences in ion intensities between HCC cases and cirrhotic controls. Putative identifications were obtained for 158 ions by mass based search against databases. We verified the identities of selected putative identifications including glycholic acid (GCA), glycodeoxycholic acid (GDCA), 3beta, 6beta-dihydroxy-5beta-cholan-24-oic acid, oleoyl carnitine, and Phe-Phe. SRM-based quantitation confirmed significant differences between HCC and cirrhotic controls in metabolite levels of bile acid metabolites, long chain carnitines and small peptide. Our study provides useful insight into appropriate experimental design and computational methods for serum biomarker discovery using LC-MS/MS based metabolomics. This study has led to the identification of candidate biomarkers with significant changes in metabolite levels between HCC cases and cirrhotic controls. This is the first MS-based metabolic biomarker discovery study on Egyptian subjects that led to the identification of candidate metabolites that discriminate early stage HCC from patients with liver cirrhosis.
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the U.S. and Egypt for biomarker discovery using label-free proteomic analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the U.S. and Egyptian cohorts. Among the 21 candidates, 10 were previously reported as HCC-associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals up-regulation of the complement and coagulation cascades pathway and down-regulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers.
Defining clinically relevant biomarkers for early stage hepatocellular carcinoma (HCC) in a high-risk population of cirrhotic patients has potentially far-reaching implications for disease management and patient health. Changes in glycan levels have been associated with the onset of numerous diseases including cancer. In the present study, we used liquid chromatography coupled with electrospray ionization mass spectrometry (LC–ESI-MS) to analyze N-glycans in sera from 183 participants recruited in Egypt and the U.S. and identified candidate biomarkers that distinguish HCC cases from cirrhotic controls. N-Glycans were released from serum proteins and permethylated prior to the LC–ESI-MS analysis. Through two complementary LC–ESI-MS quantitation approaches, global profiling and targeted quantitation, we identified 11 N-glycans with statistically significant differences between HCC cases and cirrhotic controls. These glycans can further be categorized into four structurally related clusters, matching closely with the implications of important glycosyltransferases in cancer progression and metastasis. The results of this study illustrate the power of the integrative approach combining complementary LC–ESI-MS based quantitation approaches to investigate changes in N-glycan levels between HCC cases and patients with liver cirrhosis.
This study evaluates changes in metabolite levels in hepatocellular carcinoma (HCC) cases vs. patients with liver cirrhosis by analysis of human blood plasma using gas chromatography coupled with mass spectrometry (GC-MS). Untargeted metabolomic analysis of plasma samples from participants recruited in Egypt was performed using two GC-MS platforms: a GC coupled to single quadruple mass spectrometer (GC-qMS) and a GC coupled to a time-of-flight mass spectrometer (GC-TOFMS). Analytes that showed statistically significant changes in ion intensities were selected using ANOVA models. These analytes and other candidates selected from related studies were further evaluated by targeted analysis in plasma samples from the same participants as in the untargeted metabolomic analysis. The targeted analysis was performed using the GC-qMS in selected ion monitoring (SIM) mode. The method confirmed significant changes in the levels of glutamic acid, citric acid, lactic acid, valine, isoleucine, leucine, alpha tocopherol, cholesterol, and sorbose in HCC cases vs. patients with liver cirrhosis. Specifically, our findings indicate up-regulation of metabolites involved in branched-chain amino acid (BCAA) metabolism. Although BCAAs are increasingly used as a treatment for cancer cachexia, others have shown that BCAA supplementation caused significant enhancement of tumor growth via activation of mTOR/AKT pathway, which is consistent with our results that BCAAs are up-regulated in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.