Wearable devices that integrate multiple sensors, processors, and communication technologies have the potential to transform mobile health for remote monitoring of health parameters. However, the small form factor of the wearable devices limits the battery size and operating lifetime. As a result, the devices require frequent recharging, which has limited their widespread adoption. Energy harvesting has emerged as an effective method towards sustainable operation of wearable devices. Unfortunately, energy harvesting alone is not sufficient to fulfill the energy requirements of wearable devices. This paper studies the novel problem of adaptive energy management towards the goal of self-sustainable wearables by using harvested energy to supplement the battery energy and to reduce manual recharging by users. To solve this problem, we propose a principled algorithm referred as AdaEM. There are two key ideas behind AdaEM. First, it uses machine learning (ML) methods to learn predictive models of user activity and energy usage patterns. These models allow us to estimate the potential of energy harvesting in a day as a function of the user activities. Second, it reasons about the uncertainty in predictions and estimations from the ML models to optimize the energy management decisions using a dynamic robust optimization (DyRO) formulation. We propose a light-weight solution for DyRO to meet the practical needs of deployment. We validate the AdaEM approach on a wearable device prototype consisting of solar and motion energy harvesting using real-world data of user activities. Experiments show that AdaEM achieves solutions that are within 5% of the optimal with less than 0.005% execution time and energy overhead.
Human activity recognition (HAR) and more broadly, activities of daily life recognition using wearable devices, have the potential to transform a number of applications including mobile healthcare, smart homes, and fitness monitoring. Recent approaches for HAR use multiple sensors on various locations on the body to achieve higher accuracy for complex activities. While multiple sensors increase the accuracy, they are also susceptible to reliability issues when one or more sensors are unable to provide data to the application due to sensor malfunction, user error, or energy limitations. Training multiple activity classifiers that use a subset of sensors is not desirable since it may lead to reduced accuracy for applications. To handle these limitations, we propose a novel generative approach that recovers the missing data of sensors using data available from other sensors. The recovered data is then used to seamlessly classify activities. Experiments using three publicly available activity datasets show that with data missing from one sensor, the proposed approach achieves accuracy that is within 10% of the accuracy with no missing data. Moreover, implementation on a wearable device prototype show that the proposed approach takes about 1.5 ms for recovering data in the w-HAR dataset, which results in an energy consumption of 606 μ J. The low energy consumption ensures that SensorGAN is suitable for effectively recovering data in tinyML applications on energy-constrained devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.