ObjectivesTo provide national estimates of the number and clinical and economic burden of medication errors in the National Health Service (NHS) in England.MethodsWe used UK-based prevalence of medication errors (in prescribing, dispensing, administration and monitoring) in primary care, secondary care and care home settings, and associated healthcare resource use, to estimate annual number and burden of errors to the NHS. Burden (healthcare resource use and deaths) was estimated from harm associated with avoidable adverse drug events (ADEs).ResultsWe estimated that 237 million medication errors occur at some point in the medication process in England annually, 38.4% occurring in primary care; 72% have little/no potential for harm and 66 million are potentially clinically significant. Prescribing in primary care accounts for 34% of all potentially clinically significant errors. Definitely avoidable ADEs are estimated to cost the NHS £98 462 582 per year, consuming 181 626 bed-days, and causing/contributing to 1708 deaths. This comprises primary care ADEs leading to hospital admission (£83.7 million; causing 627 deaths), and secondary care ADEs leading to longer hospital stay (£14.8 million; causing or contributing to 1081 deaths).ConclusionsUbiquitous medicines use in health care leads unsurprisingly to high numbers of medication errors, although most are not clinically important. There is significant uncertainty around estimates due to the assumption that avoidable ADEs correspond to medication errors, data quality, and lack of data around longer-term impacts of errors. Data linkage between errors and patient outcomes is essential to progress understanding in this area.
In informing decisions, utilising health technology assessment (HTA), expert elicitation can provide valuable information, particularly where there is a less-developed evidence-base at the point of market access. In these circumstances, formal methods to elicit expert judgements are preferred to improve the accountability and transparency of the decision-making process, help reduce bias and the use of heuristics, and also provide a structure that allows uncertainty to be expressed. Expert elicitation is the process of transforming the subjective and implicit knowledge of experts into their quantifiable expressions. The use of expert elicitation in HTA is gaining momentum, and there is particular interest in its application to diagnostics, medical devices and complex interventions such as in public health or social care. Compared with the gathering of experimental evidence, elicitation constitutes a reasonably low-cost source of evidence. Given its inherent subject nature, the potential biases in elicited evidence cannot be ignored and, due to its infancy in HTA, there is little guidance to the analyst wishing to conduct a formal elicitation exercise. This article attempts to summarise the stages of designing and conducting an expert elicitation, drawing on key literature and examples, most of which are not in HTA. In addition, we critique their applicability to HTA, given its distinguishing features. There are a number of issues that the analyst should be mindful of, in particular the need to appropriately characterise the uncertainty associated with model inputs and the fact that there are often numerous parameters required, not all of which can be defined using the same quantities. This increases the need for the elicitation task to be as straightforward as possible for the expert to complete.
Background The evidence used to inform health care decision making (HCDM) is typically uncertain. In these situations, the experience of experts is essential to help decision makers reach a decision. Structured expert elicitation (referred to as elicitation) is a quantitative process to capture experts’ beliefs. There is heterogeneity in the existing elicitation methodology used in HCDM, and it is not clear if existing guidelines are appropriate for use in this context. In this article, we seek to establish reference case methods for elicitation to inform HCDM. Methods We collated the methods available for elicitation using reviews and critique. In addition, we conducted controlled experiments to test the accuracy of alternative methods. We determined the suitability of the methods choices for use in HCDM according to a predefined set of principles for elicitation in HCDM, which we have also generated. We determined reference case methods for elicitation in HCDM for health technology assessment (HTA). Results In almost all methods choices available for elicitation, we found a lack of empirical evidence supporting recommendations. Despite this, it is possible to define reference case methods for HTA. The reference methods include a focus on gathering experts with substantive knowledge of the quantities being elicited as opposed to those trained in probability and statistics, eliciting quantities that the expert might observe directly, and individual elicitation of beliefs, rather than solely consensus methods. It is likely that there are additional considerations for decision makers in health care outside of HTA. Conclusions The reference case developed here allows the use of different methods, depending on the decision-making setting. Further applied examples of elicitation methods would be useful. Experimental evidence comparing methods should be generated.
Background Many decisions in health care aim to maximise health, requiring judgements about interventions that may have higher health effects but potentially incur additional costs (cost-effectiveness framework). The evidence used to establish cost-effectiveness is typically uncertain and it is important that this uncertainty is characterised. In situations in which evidence is uncertain, the experience of experts is essential. The process by which the beliefs of experts can be formally collected in a quantitative manner is structured expert elicitation. There is heterogeneity in the existing methodology used in health-care decision-making. A number of guidelines are available for structured expert elicitation; however, it is not clear if any of these are appropriate for health-care decision-making. Objectives The overall aim was to establish a protocol for structured expert elicitation to inform health-care decision-making. The objectives are to (1) provide clarity on methods for collecting and using experts’ judgements, (2) consider when alternative methodology may be required in particular contexts, (3) establish preferred approaches for elicitation on a range of parameters, (4) determine which elicitation methods allow experts to express uncertainty and (5) determine the usefulness of the reference protocol developed. Methods A mixed-methods approach was used: systemic review, targeted searches, experimental work and narrative synthesis. A review of the existing guidelines for structured expert elicitation was conducted. This identified the approaches used in existing guidelines (the ‘choices’) and determined if dominant approaches exist. Targeted review searches were conducted for selection of experts, level of elicitation, fitting and aggregation, assessing accuracy of judgements and heuristics and biases. To sift through the available choices, a set of principles that underpin the use of structured expert elicitation in health-care decision-making was defined using evidence generated from the targeted searches, quantities to elicit experimental evidence and consideration of constraints in health-care decision-making. These principles, including fitness for purpose and reflecting individual expert uncertainty, were applied to the set of choices to establish a reference protocol. An applied evaluation of the developed reference protocol was also undertaken. Results For many elements of structured expert elicitation, there was a lack of consistency across the existing guidelines. In almost all choices, there was a lack of empirical evidence supporting recommendations, and in some circumstances the principles are unable to provide sufficient justification for discounting particular choices. It is possible to define reference methods for health technology assessment. These include a focus on gathering experts with substantive skills, eliciting observable quantities and individual elicitation of beliefs. Additional considerations are required for decision-makers outside health technology assessment, for example at a local level, or for early technologies. Access to experts may be limited and in some circumstances group discussion may be needed to generate a distribution. Limitations The major limitation of the work conducted here lies not in the methods employed in the current work but in the evidence available from the wider literature relating to how appropriate particular methodological choices are. Conclusions The reference protocol is flexible in many choices. This may be a useful characteristic, as it is possible to apply this reference protocol across different settings. Further applied studies, which use the choices specified in this reference protocol, are required. Funding This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 37. See the NIHR Journals Library website for further project information. This work was also funded by the Medical Research Council (reference MR/N028511/1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.