School dropout is absenteeism from school for no good reason for a continuous number of days. Addressing this challenge requires a thorough understanding of the underlying issues and effective planning for interventions. Over the years machine learning has gained much attention on addressing the problem of students dropout. This is because machine learning techniques can effectively facilitate determination of at-risk students and timely planning for interventions. In order to collect, organize, and synthesize existing knowledge in the field of machine learning on addressing student dropout; literature in academic journals, books and case studies have been surveyed. The survey reveal that, several machine learning algorithms have been proposed in literature. However, most of those algorithms have been developed and tested in developed countries. Hence, developing countries are facing lack of research on the use of machine learning on addressing this problem. Furthermore, many studies focus on addressing student dropout using student level datasets. However, developing countries need to include school level datasets due to the issue of limited resources. Therefore, this paper presents an overview of machine learning in education with the focus on techniques for student dropout prediction. Furthermore, the paper highlights open challenges for future research directions.
Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that curtail poultry production if they are not detected early. In Tanzania, these diseases are not detected early due to limited access to agricultural support services by poultry farmers. Deep learning techniques have the potential for early diagnosis of these poultry diseases. In this study, a deep Convolutional Neural Network (CNN) model was developed to diagnose poultry diseases by classifying healthy and unhealthy fecal images. Unhealthy fecal images may be symptomatic of Coccidiosis, Salmonella, and Newcastle diseases. We collected 1,255 laboratory-labeled fecal images and fecal samples used in Polymerase Chain Reaction diagnostics to annotate the laboratory-labeled fecal images. We took 6,812 poultry fecal photos using an Open Data Kit. Agricultural support experts annotated the farm-labeled fecal images. Then we used a baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We trained models using farm and laboratory-labeled fecal images and then fine-tuned them. The test set used farm-labeled images. The test accuracies results without fine-tuning were 83.06% for the baseline CNN, 85.85% for VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and 88.27% for Xception. Finetuning while freezing the batch normalization layer improved model accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3, 98.02% for MobileNetV2, and 98.24% for Xception, with F1 scores for all classifiers above 75% in all four classes. Given the lighter weight of the trained MobileNetV2 and its better ability to generalize, we recommend deploying this model for the early detection of poultry diseases at the farm level.
In Tanzania, smallholder farmers contribute significantly to banana production and Kagera, Mbeya, and Arusha are among the leading regions. However, pests and diseases are a threat to food security. Early detection of banana diseases is important to identify the diseases before too much damage is done on the plants. In this paper, a tool for early detection of banana diseases by using a deep learning approach is proposed. Five deep learning architectures, namely Vgg16, Resnet18, Resnet50, Resnet152 and InceptionV3 were used to develop models for banana disease detection, achieving all high accuracies, varying from 95.41% for InceptionV3 to 99.2% for Resnet152. InceptionV3 was selected for mobile deployment because it demands much less memory. The developed tool was capable of detecting diseases with a confidence of 99% of the captured leaves from the real environment. This tool will help smallholder farmers conduct early detection of banana diseases and improve their productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.