The disposal of end-of-life (EOL) photovoltaic solar panels has become a relevant environmental issue as they are considered to be a hazardous electronic waste. On the other hand, enormous benefits are achieved from recovering valuable metals and materials from such waste. Eventually, physical and chemical processing will become the most important stages during the recycling process. A physical treatment including crushing, grinding, and screening was achieved, and it was observed that a fine fraction of −0.25 mm had the maximum percentage of the required materials. Moreover, the optimum chemical treatment conditions were adjusted to reach the maximum recovery of silver, aluminum, and silicon. The synthesis of silicon oxide, silver oxide, alunite, and K-Alum from leachant solution was performed through a simple route. The structural and morphological properties of the prepared materials were defined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM).
Consumption of photovoltaic solar panels is expected to increase, so the growing amount of end-of-life (EOL) solar panels will require large spaces for their disposal, which at the moment costs around 200 euros/ton. Thus, a proper treatment technique to recover secondary materials from this waste, which are mainly copper, aluminum, silicon, high-transmittance glass, and plastics, must be developed. The last three components are strongly attached to each other; hence, their detachment is necessary for recovery. To achieve this objective, a chemical route was chosen; in fact, solvent extraction is highly recommended, as it has a high separation efficiency. In this study, D-limonene as a bio-solvent was examined for detaching different components of solar panels from each other. A high efficiency for ethylene vinyl acetate (EVA) dissolution and components’ detachment under different conditions was achieved with the help of sonication power. The effects of sonication power, thermal pre-treatment, temperature, and contact time on detachment percentage were examined, and the best conditions (namely, no pre-treatment, medium sonication power of 450 W, temperature of 60 °C, and a contact time of 120 min) were found for total component detachment. Additionally, the recyclability of D-limonene was examined, and it was established that the solvent could carry out 100% component detachment for three cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.