The proton transfer mechanism between aqueous Brønsted acids and bases, forming an encounter pair, has been studied in real time with ultrafast infrared spectroscopy. The transient intermediacy of a hydrated proton, formed by ultrafast dissociation from an optically triggered photoacid proton donor ROH, is implicated by the appearance of an infrared absorption marker band before protonation of the base, B-. Thus, proton exchange between an acid and a base in aqueous solution is shown to proceed by a sequential, von Grotthuss-type, proton-hopping mechanism through water bridges. The spectra suggest a hydronium cation H3O+ structure for the intermediate, stabilized in the Eigen configuration in the ionic complex RO-...H3O+...B-.
Despite the widespread importance of aqueous bicarbonate chemistry, its conjugate acid, carbonic acid, has remained uncharacterized in solution. Here we report the generation of deuterated carbonic acid in deuterium oxide solution by ultrafast protonation of bicarbonate and its persistence for nanoseconds. We follow the reaction dynamics upon photoexcitation of a photoacid by monitoring infrared-active marker modes with femtosecond time resolution. By fitting a kinetic model to the experimental data, we directly obtain the on-contact proton-transfer rate to bicarbonate, previously inaccessible with the use of indirect methods. A Marcus free-energy correlation supports an associated pKa (Ka is the acid dissociation constant) of 3.45 +/- 0.15, which is substantially lower than the value of 6.35 that is commonly assumed on the basis of the overall carbon dioxide-to-bicarbonate equilibrium. This result should spur further exploration of acid-base reactivity in carbon dioxide-rich aqueous environments such as those anticipated under sequestration schemes.
We investigate one of the fundamental reactions in solutions, the neutralization of an acid by a base. We use a photoacid, 8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS; pyranine), which upon photoexcitation reacts with acetate under transfer of a deuteron (solvent: deuterated water). We analyze in detail the resulting bimodal reaction dynamics between the photoacid and the base, the first report on which was recently published. We have ascribed the bimodal proton-transfer dynamics to contributions from preformed hydrogen bonding complexes and from initially uncomplexed acid and base. We report on the observation of an additional (6 ps)(-1) contribution to the reaction rate constant. As before, we analyze the slower part of the reaction within the framework of the diffusion model and the fastest part by a static, sub-150 fs reaction rate. Adding the second static term considerably improves the overall modeling of the experimental results. It also allows to connect experimentally the diffusion controlled bimolecular reaction models as defined by Eigen-Weller and by Collins-Kimball. Our findings are in agreement with a three-stage mechanism for liquid phase intermolecular proton transfer: mutual diffusion of acid and base to form a "loose" encounter complex, followed by reorganization of the solvent shells and by "tightening" of the acid-base encounter complex. These rearrangements last a few picoseconds and enable a prompt proton transfer along the reaction coordinate, which occurs faster than our time resolution of 150 fs. Alternative models for the explanation of the slower "on-contact" reaction time of the loose encounter complex in terms of proton transmission through a von Grotthuss mechanism are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.