Background:
Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining aforementioned prosurvival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c-MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein a nanocarrier was employed to intensify its pernicious effectiveness on cancerous cells.
Objective:
The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells.
Methods
Results:
Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by dephosphorelating AKT ptotein.
Conclusion:
The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during a long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.
Background: Megakaryopoiesis is characterized by progressive polyploidization and the expression of megakaryocytic markers. Numerous transcription factors and physiological signaling pathways regulate this phenomenon. Megakaryocyte differentiation induction in the K562 cell line and hematopoietic stem cells via nanocurcumin drug has been identified in our previous study. K562 cells are typical Chronic Myelogenous Leukemia (CML) cells that are resistant to apoptosis and express the bcr-abl fusion gene. These cells have the potential to differentiate into erythrocytes and megakaryocytes. Curcumin is well known as a component with strong potential to alter NFκB activity in various cells. NFκB pathway regulates various genes such as apoptotic and immune response genes. The aim of the current study is to evaluate the possible role of nanocurcumin in NFκB pathway regulation during the megakaryopoiesis process in the K562 cell line.
Materials and Methods: Megakaryocyte markers expression and phenotype alteration of nanocurcumin-treated K562 cells have been detected by flow cytometry and microscopy imaging. The nuclear level of the RelA (p65) subunit of NFκB was determined by western blot test in K562 cells during megakaryopoiesis induction via nanocurcumin treatment at different times. The expression of NFκB target genes including c-MYC, BAX, and NQO1 was also analyzed in nanocurcumin-treated K562 cells by quantitative RT-PCR assay at different times.
Results: It was demonstrated that nanocurcumin leads to an increase in NFκB activity transiently during megakaryocyte differentiation, which is followed by a change in the expression of c-MYC, BAX, and NQO1 target genes.
Conclusion: The NFκB pathway can be considered a new pathway for inducing megakaryocyte differentiation by nanocurcumin for the purposes of in vitro and in vivo megakaryopoiesis experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.