Pulmonary hypertension is associated with diminished expression of endothelial nitric oxide synthase. It is possible that decreased expression of nitric oxide synthase may contribute to pulmonary vasoconstriction and to the excessive growth of the tunica media observed in this disease.
Peroxynitrite is a potent oxidant formed by the rapid reaction of the free radicals nitric oxide (NO) and superoxide. It causes airway hyperresponsiveness and airway epithelial damage, enhances inflammatory cell recruitment, and inhibits pulmonary surfactant. Asthma is characterized by increased airway hyperresponsiveness, airway epithelial shedding, and inflammation. We examined the production of peroxynitrite and the expression of inducible nitric oxide synthase (iNOS) in airways of asthmatic patients compared to normal control subjects. We also performed a double-blind, crossover randomized-order, placebo-controlled study on 10 asthmatic patients to study the effects of inhaled glucocorticoid treatment (Budesonide) on the formation of peroxynitrite and NO. Fiberoptic bronchial biopsies were examined by immunohistochemistry with antiserum to nitrotyrosine, a marker of protein nitration by peroxynitrite. We also examined the expression of iNOS by immunohistochemistry and in situ hybridization, and measured exhaled NO by chemiluminescence. We correlated the airway production of peroxynitrite with pulmonary functions and airway responsiveness. In airway passages of control subjects, there was weak or no nitrotyrosine immunoreactivity. In contrast, there was strong immunoreactivity for nitrotyrosine in the airway epithelium and inflammatory cells in the airways of persons with asthma. Budesonide treatment resulted in a significant reduction in nitrotyrosine immunoreactivity. Expression of iNOS was evident in the airway pithelium of controls and asthmatic patients, but was significantly more abundant in asthmatic patients. The presence of nitrotyrosine in the airway epithelium (r=-0.841, P<0.0001; r=-0.771, P=0.0004) and inflammatory cells (r=-0.727, P=0014; r=-0.681, P=0.004) correlated inversely with methacholine PC20 and forced expiratory volume in 1 s, respectively. Asthma is associated with increased peroxynitrite formation in the airways, which is reduced after Budesonide treatment. The potent oxidant peroxynitrite may contribute to airway obstruction and hyperresponsiveness and epithelial damage in asthma.
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by alveolar inflammation, progressive proliferation of septal cells, increased production of septal matrix, and loss of lung architecture. The process of cellular injury in lung fibrosis is thought to be mediated by oxygen radicals produced by infiltrating inflammatory cells. Peroxynitrite is a potent oxidant produced by the rapid reaction of nitric oxide (NO) and superoxide. We investigated the production of nitrotyrosine, a byproduct of protein nitration by peroxynitrite, and the expression of the enzymes responsible for generating NO, in lungs of patients with IPF and compared them with lungs of normal control subjects. We used immunohistochemistry, histochemistry, and in situ hybridization to study the production of nitrotyrosine and the expression of inducible (iNOS) and constitutive endothelial (eNOS) nitric oxide synthases in 48 lungs of patients with different stages of IPF and 21 normal lungs. In lungs of control subjects, there was little expression of iNOS and nitrotyrosine in the airway epithelium and alveolar macrophages, and abundant expression of eNOS in the airway epithelium and vascular endothelium. By contrast, in lungs of patients with IPF, strong expression of nitrotyrosine and NOS was seen in macrophages, neutrophils, and alveolar epithelium. A significant increase in the expression of these molecules was only seen in lungs of patients with the early to intermediate stage of the disease. The active stage of IPF is associated with increased inflammatory and alveolar expression of nitrotyrosine and NOS. Increased production of NO and peroxynitrite may be responsible for the oxidative damage seen in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.