The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces a profound suppression of the primary immunoglobulin-M (IgM) antibody response. The suppression of IgM production by TCDD can occur through direct interactions with the B cell, is aryl hydrocarbon receptor-dependent, and is mediated through alterations in the differentiation of B cells into plasma cells. The objective of the present investigation was to characterize the effects of TCDD on the regulation of Pax5, a crucial repressor of B-cell differentiation, and four downstream targets that are directly regulated by Pax5 and involved in immunoglobulin regulation, immunoglobulin heavy chain (IgH), kappa light chain (Igkappa), J chain, and X box protein-1 (XBP-1). Lipopolysaccharide (LPS) activation of aryl hydrocarbon receptor-expressing CH12.LX cells induced B cell differentiation and robust immunoglobulin secretion that was markedly (~50%) suppressed in the presence of 10 nM TCDD. Kinetic studies show that LPS-activation induced a time-dependent decrease in Pax5 mRNA levels, protein, and DNA binding activity during a 72-h culture period that was almost completely blocked in the presence of TCDD. Concomitant with the time-dependent down-regulation of Pax5 in LPS-activated control CH12.LX cells, a reciprocal induction of IgH, Igkappa, J chain mRNA levels, and cellular XBP-1 was observed. Conversely, and consistent with the absence of Pax5 down-regulation associated with TCDD treatment, IgH, Igkappa, J chain mRNA, and XBP-1 protein were persistently repressed in LPS-activated CH12.LX cells. Collectively, these studies demonstrate the involvement of altered Pax5 regulation in the suppression of the primary IgM antibody response by TCDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.