Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.
Today, autonomous underwater vehicles (AUVs) are mostly used for survey missions, but many existing applications require manipulation capabilities, such as the maintenance of permanent observatories, submerged oil wells, cabled sensor networks, and pipes; the deployment and recovery of benthic stations; or the search and recovery of black boxes. Currently, these tasks require the use of work-class remotely operated vehicles (ROVs) deployed from vessels equipped with dynamic positioning, leaving such solutions expensive to adopt. To face these challenges during the last 25 years, scientists have researched the idea of increasing the autonomy of underwater intervention systemsThis work was supported by the Spanish Project DPI2014-57746-C3-3-R (MERBOTS-ARCHROV
A key challenge in autonomous mobile manipulation is the ability to determine, in real time, how to safely execute complex tasks when placed in unknown or changing world. Addressing this issue for Intervention Autonomous Underwater Vehicles (I‐AUVs), operating in potentially unstructured environment is becoming essential. Our research focuses on using motion planning to increase the I‐AUVs autonomy, and on addressing three major challenges: (a) producing consistent deterministic trajectories, (b) addressing the high dimensionality of the system and its impact on the real‐time response, and (c) coordinating the motion between the floating vehicle and the arm. The latter challenge is of high importance to achieve the accuracy required for manipulation, especially considering the floating nature of the AUV and the control challenges that come with it. In this study, for the first time, we demonstrate experimental results performing manipulation in unknown environment. The Multirepresentation, Multiheuristic A* (MR‐MHA*) search‐based planner, previously tested only in simulation and in a known a priori environment, is now extended to control Girona500 I‐AUV performing a Valve‐Turning intervention in a water tank. To this aim, the AUV was upgraded with an in‐house‐developed laser scanner to gather three‐dimensional (3D) point clouds for building, in real time, an occupancy grid map (octomap) of the environment. The MR‐MHA* motion planner used this octomap to plan, in real time, collision‐free trajectories. To achieve the accuracy required to complete the task, a vision‐based navigation method was employed. In addition, to reinforce the safety, accounting for the localization uncertainty, a cost function was introduced to keep minimum clearance in the planning. Moreover a visual‐servoing method had to be implemented to complete the last step of the manipulation with the desired accuracy. Lastly, we further analyzed the approach performance from both loose‐coupling and clearance perspectives. Our results show the success and efficiency of the approach to meet the desired behavior, as well as the ability to adapt to unknown environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.