Thanks to food technology, the production of cold tomato soups such as salmorejo, a traditional Spanish dish, has become industrialised. Thermal treatments play an important role in ready-to-eat meals, prolonging their shelf-life. Radiofrequency (RF) heating is less energy-intensive than conventional heat exchangers and has been successfully used to pasteurise food; novel applications, however, provide results at laboratory or pilot scale, so conclusions might not be translatable to industry. In this study, a prospective Life-Cycle Assessment of salmorejo pasteurised using RF was performed to highlight the relevance of upscaling and to compare its environmental impacts with those of conventional pasteurisation. “Gate-to-gate” results show that the pilot has greater environmental impacts due to its greater energy consumption, as thermal energy is not recovered. The packing and landfill of organic waste exhibit the highest impacts at industrial scale. RF technology does not imply significant environmental improvements versus conventional pasteurisation. Potential changes in the energy background of future scenarios have relevant consequences in the environmental impacts. “Farm-to-factory-gate” analysis highlights ingredients and tomato valorisation as the most impacting stages. The prospective LCA of scaled up scenarios constitutes a tool for environmental screening in food ecodesign, contributing to Sustainable Development Goal 12.
Whey exhibits interesting nutritional properties, but its high β-Lactoglobulin (β-Lg) content could be a concern in infant food applications. In this study, high-pressure processing (HPP) was assessed as a β-Lg removal strategy to generate an enriched α-Lactalbumin (α-La) fraction from bovine native whey concentrate. Different HPP treatment parameters were considered: initial pH (physiological and acidified), sample temperature (7–35 °C), pressure (0–600 MPa) and processing time (0–490 s). The conditions providing the best α-La yield and α-La purification degree balance (46.16% and 80.21%, respectively) were 4 min (600 MPa, 23 °C), despite the significant decrease of the surface hydrophobicity and the total thiol content indexes in the α-La-enriched fraction. Under our working conditions, the general effects of HPP on α-La and β-Lg agreed with results reported in other studies of cow milk or whey. Notwithstanding, our results also indicated that the use of native whey concentrate could improve the β-Lg precipitation degree and the α-La purification degree, in comparison to raw milk or whey. Future studies should include further characterization of the α-La-enriched fraction and the implementation of membrane concentration and HPP treatment to valorize cheese whey.
The MW heating at early or at final stage of drying process to obtain a crispy apple snack was studied. The effect of MW power and time of application was also evaluated on colour, texture, physico-chemical and sensory properties. Apple snack obtained with the MW heating (7.5 min at 3.000 W) at early stage after an osmotic pre-treatment resulted in apple slices more porous and with better sensory attributes than if it is applied at later stage of drying. Keywords: apple; snack; drying; microwaves
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.