Gases releasing from shallow permafrost above 150 m may contain methane produced by the dissociation of pore metastable gas hydrates, which can exist in permafrost due to self-preservation. In this study, special experiments were conducted to study the self-preservation kinetics. For this, sandy samples from gas-bearing permafrost horizons in West Siberia were first saturated with methane hydrate and frozen and then exposed to gas pressure drop below the triple-phase equilibrium in the “gas–gas hydrate–ice” system. The experimental results showed that methane hydrate could survive for a long time in frozen soils at temperatures of −5 to −7 °C at below-equilibrium pressures, thus evidencing the self-preservation effect. The self-preservation of gas hydrates in permafrost depends on its temperature, salinity, ice content, and gas pressure. Prolonged preservation of metastable relict hydrates is possible in ice-rich sandy permafrost at −4 to −5 °C or colder, with a salinity of <0.1% at depths below 20–30 m.
Destabilization of intrapermafrost gas hydrates is one of the possible mechanisms responsible for methane emission in the Arctic shelf. Intrapermafrost gas hydrates may be coeval to permafrost: they originated during regression and subsequent cooling and freezing of sediments, which created favorable conditions for hydrate stability. Local pressure increase in freezing gas-saturated sediments maintained gas hydrate stability from depths of 200–250 meters or shallower. The gas hydrates that formed within shallow permafrost have survived till present in the metastable (relict) state. The metastable gas hydrates located above the present stability zone may dissociate in the case of permafrost degradation as it becomes warmer and more saline. The effect of temperature increase on frozen sand and silt containing metastable pore methane hydrate is studied experimentally to reconstruct the conditions for intrapermafrost gas hydrate dissociation. The experiments show that the dissociation process in hydrate-bearing frozen sediments exposed to warming begins and ends before the onset of pore ice melting. The critical temperature sufficient for gas hydrate dissociation varies from −3.0 to −0.3 °C and depends on lithology (particle size) and salinity of the host frozen sediments. Taking into account an almost gradientless temperature distribution during degradation of subsea permafrost, even minor temperature increases can be expected to trigger large-scale dissociation of intrapermafrost hydrates. The ensuing active methane emission from the Arctic shelf sediments poses risks of geohazard and negative environmental impacts.
The active emission of gas (mainly methane) from terrestrial and subsea permafrost in the Russian Arctic has been confirmed by ample evidence. In this paper, a generalization and some systematization of gas manifestations recorded in the Russian Arctic is carried out. The published data on most typical gas emission cases have been summarized in a table and illustrated by a map. The tabulated data include location, signatures, and possible sources of each gas show, with respective references. All events of onshore and shelf gas release are divided into natural and man-caused. and the natural ones are further classified as venting from lakes or explosive emissions in dryland conditions that produce craters on the surface. Among natural gas shows on land, special attention is paid to the emission of natural gas from Arctic lakes, as well as gas emissions with craters formation. In addition, a description of the observed man-caused gas manifestations associated with the drilling of geotechnical and production wells in the Arctic region is given. The reported evidence demonstrates the effect of permafrost degradation on gas release, especially in oil and gas fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.