Macrophages are responsible for the control of inflammation and healing, and their malfunction results in cardiometabolic disorders. TGF-β is a pleiotropic growth factor with dual (protective and detrimental) roles in atherogenesis. We have previously shown that in human macrophages, TGF-β1 activates Smad2/3 signaling and induces a complex gene expression program. However, activated genes were not limited to known Smad2/3-dependent ones, which prompted us to study TGF-β1–induced signaling in macrophages in detail. Analysis of Id3 regulatory sequences revealed a novel enhancer, located between +4517 and 4662 bp, but the luciferase reporter assay demonstrated that this enhancer is not Smad2/3 dependent. Because Id3 expression is regulated by Smad1/5 in endothelial cells, we analyzed activation of Smad1/5 in macrophages. We demonstrate here for the first time, to our knowledge, that TGF-β1, but not BMPs, activates Smad1/5 in macrophages. We show that an ALK5/ALK1 heterodimer is responsible for the induction of Smad1/5 signaling by TGF-β1 in mature human macrophages. Activation of Smad1/5 by TGF-β1 induces not only Id3, but also HAMP and PLAUR, which contribute to atherosclerotic plaque vulnerability. We suggest that the balance between Smad1/5- and Smad2/3-dependent signaling defines the outcome of the effect of TGF-β on atherosclerosis where Smad1/5 is responsible for proatherogenic effects, whereas Smad2/3 regulate atheroprotective effects of TGF-β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.