In Parkinson’s disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA−/− neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.
The zinc-dependent medium-chain alcohol dehydrogenase from Rhodococcus erythropolis (ReADH) is one of the most versatile biocatalysts for the stereoselective reduction of ketones to chiral alcohols. Despite its known broad substrate scope, ReADH only accepts carbonyl substrates with either a methyl or an ethyl group adjacent to the carbonyl moiety; this limits its use in the synthesis of the chiral alcohols that serve as a building blocks for pharmaceuticals. Protein engineering to expand the substrate scope of ReADH toward bulky substitutions next to carbonyl group (ethyl 2-oxo-4-phenylbutyrate) opens up new routes in the synthesis of ethyl-2-hydroxy-4phenylbutanoate, an important intermediate for anti-hypertension drugs like enalaprilat and lisinopril. We have performed computer-aided engineering of ReADH toward ethyl 2-oxo-4phenylbutyrate and octanone derivatives. W296, which is located in the small binding pocket of ReADH, sterically restricts the access of ethyl 2-oxo-4-phenylbutyrate, octan-3-one or octan-4-one toward the catalytic zinc ion and thereby limits ReADH activity. Computational analysis was used to identify position W296 and site-saturation mutagenesis (SSM) yielded an improved variant W296A with a 3.6-fold improved activity toward ethyl 2-oxo-4-phenylbutyrate when compared to WT ReADH (ReADH W296A: 17.10 U/mg and ReADH WT: 4.7 U/mg). In addition, the regioselectivity of ReADH W296A is shifted toward octanone substrates. ReADH W296A has a more than 16-fold increased activity toward octan-4-one (ReADH W296A: 0.97 U/mg and ReADH WT: 0.06 U/mg) and a more than 30-fold decreased activity toward octan-2-one (ReADH W296A: 0.23 U/ mg and ReADH WT: 7.69 U/mg). Computational and experimental results revealed the role of position W296 in controlling the substrate scope and regiopreference of ReADH for a variety of carbonyl substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.