Summary Stream processing is a parallel paradigm used in many application domains. With the advance of graphics processing units (GPUs), their usage in stream processing applications has increased as well. The efficient utilization of GPU accelerators in streaming scenarios requires to batch input elements in microbatches, whose computation is offloaded on the GPU leveraging data parallelism within the same batch of data. Since data elements are continuously received based on the input speed, the bigger the microbatch size the higher the latency to completely buffer it and to start the processing on the device. Unfortunately, stream processing applications often have strict latency requirements that need to find the best size of the microbatches and to adapt it dynamically based on the workload conditions as well as according to the characteristics of the underlying device and network. In this work, we aim at implementing latency‐aware adaptive microbatching techniques and algorithms for streaming compression applications targeting GPUs. The evaluation is conducted using the Lempel‐Ziv‐Storer‐Szymanski compression application considering different input workloads. As a general result of our work, we noticed that algorithms with elastic adaptation factors respond better for stable workloads, while algorithms with narrower targets respond better for highly unbalanced workloads.
The stream processing paradigm is used in several scientific and enterprise applications in order to continuously compute results out of data items coming from data sources such as sensors. The full exploitation of the potential parallelism offered by current heterogeneous multi-cores equipped with one or more GPUs is still a challenge in the context of stream processing applications. In this work, our main goal is to present the parallel programming challenges that the programmer has to face when exploiting CPUs and GPUs' parallelism at the same time using traditional programming models. We highlight the parallelization methodology in two use-cases (the Mandelbrot Streaming benchmark and the PARSEC's Dedup application) to demonstrate the issues and benefits of using heterogeneous parallel hardware. The experiments conducted demonstrate how a high-level parallel programming model targeting stream processing like the one offered by SPar can be used to reduce the programming effort still offering a good level of performance if compared with state-of-the-art programming models.
NAS Parallel Benchmarks (NPB) is a standard benchmark suite used in the evaluation of parallel hardware and software. Several research efforts from academia have made these benchmarks available with different parallel programming models beyond the original versions with OpenMP and MPI. This work joins these research efforts by providing a new CUDA implementation for NPB. Our contribution covers different aspects beyond the implementation. First, we define design principles based on the best programming practices for GPUs and apply them to each benchmark using CUDA. Second, we provide ease of use parametrization support for configuring the number of threads per block in our version. Third, we conduct a broad study on the impact of the number of threads per block in the benchmarks. Fourth, we propose and evaluate five strategies for helping to find a better number of threads per block configuration. The results have revealed relevant performance improvement solely by changing the number of threads per block, showing performance improvements from 8% up to 717% among the benchmarks. Fifth, we conduct a comparative analysis with the literature, evaluating performance, memory consumption, code refactoring required, and parallelism implementations. The performance results have shown up to 267% improvements over the best benchmarks versions available. We also observe the best and worst design choices, concerning code size and the performance trade‐off. Lastly, we highlight the challenges of implementing parallel CFD applications for GPUs and how the computations impact the GPU's behavior.
The combined exploitation of stream and data parallelism is demonstrating encouraging performance results in the literature for heterogeneous architectures, which are present on every computer systems today. However, provide parallel software efficiently targeting those architectures requires significant programming effort and expertise. The SPar domain-specific language already represents a solution to this problem providing proven high-level programming abstractions for multi-core architectures. In this paper, we enrich the SPar language adding support for GPUs. New transformation rules are designed for generating parallel code using stream and data parallel patterns. Our experiments revealed that these transformations rules are able to improve performance while the high-level programming abstractions are maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.