A series of novel 3-aminothiazolquinolones as analogues of quinolone antibacterial agents were designed and synthesized in an effort to circumvent quinolone resistance. Among these 3-aminothiazolquinolones, 3-(2-aminothiazol-4-yl)-7-chloro-6-(pyrrolidin-1-yl) quinolone 12b exhibited potent antibacterial activity, low cytotoxicity to hepatocyte cells, strong inhibitory potency to DNA gyrase, and a broad antimicrobial spectrum including against multidrug-resistant strains. This active molecule 12b also induced bacterial resistance more slowly than norfloxacin. Analysis of structure-activity relationships (SARs) disclosed that the 2-aminothiazole fragment at the 3-position of quinolone plays an important role in exerting antibacterial activity. Molecular modeling and experimental investigation of aminothiazolquinolone 12b with DNA from a sensitive methicillin-resistant Staphylococcus aureus (MRSA) strain revealed that the possible antibacterial mechanism might be related to the formation of a compound 12b-Cu(2+)-DNA ternary complex in which the Cu(2+) ion acts as a bridge between the backbone of 3-aminothiazolquinolone and the phosphate group of the nucleic acid.
Naphthalimide compounds are an important type of nitrogen-containing aromatic heterocycles with cyclic double imides and the naphthalene framework. This π-deficient large conjugated planar structure enables naphthalimide derivatives to readily interact with various biological cations, anions, small molecules and macromolecules such as DNAs, enzymes and recetors in living organism via noncovalent bonds, therefore exhibiting extensive potentiality in relatively medicinal applications. Currently, some naphthalimides as anticancer agents have entered into clinical trials and other naphthalimide-based medicinal developments as potential drugs for treatment of various diseases are actively and unprecedentedly expanding. Naphthalimide-derived artificial ion receptors, fluorescent probes and cell imaging agents are being overwhelmingly investigated and have a diversity of potential applications in real-time detecting ions and biomolecules, understanding biological processes and determining pharmacological and pharmacokinetic properties. All the above mentions have strongly implied that naphthalimide-based derivatives as new skeleton structure of compounds possess increasingly expanding relational medicinal applications, and the related research is becoming a quite attractive active topic and newly rising highlight. Combining with our research and referring other works from literature, this work systematically reviews the current research and development of heterocyclic naphthalimides as anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antidepressant agents as well as artificial cation and anion receptors, diagnostic agents and pathologic probes, and cell imaging agents for biologically important species. Some rational design strategies, structure-activity relationships and action mechanisms are discussed. The perspectives of the future development of naphthalimide-based medicinal chemistry are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.