Decades of research dedicated toward Alzheimer's disease (AD) has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.
BackgroundNon-cell autonomous toxicity is one of the potential mechanisms implicated in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). However, the exact role of glial cells in ALS pathology is yet to be fully understood. In a cellular model recapitulating the pathology of sporadic ALS, we have studied the inflammatory response of astroglia following exposure to the cerebrospinal fluid from ALS patients (ALS-CSF).MethodsVarious inflammatory markers including pro-inflammatory and anti-inflammatory cytokines, COX-2, PGE-2, trophic factors, glutamate, nitric oxide (NO), and reactive oxygen species (ROS) were analyzed in the rat astroglial cultures exposed to ALS-CSF and compared with the disease control or normal controls. We used immunofluorescence, ELISA, and immunoblotting techniques to investigate the protein expression and real-time PCR to study the messenger RNA (mRNA) expression. Glutamate, NO, and ROS were estimated using appropriate biochemical assays. Further, the effect of conditioned medium from the astroglial cultures exposed to ALS-CSF on NSC-34 motor neuronal cell line was detected using the MTT assay. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc test, or Student’s t test, as applicable.ResultsHere, we report that the ALS-CSF enhanced the production and release of inflammatory cytokines IL-6 and TNF-α, as well as COX-2 and PGE-2. Concomitantly, anti-inflammatory cytokine IL-10 and the beneficial trophic factors, namely VEGF and GDNF, were down-regulated. We also found impaired regulation of glutamate, NO, and ROS in the astroglial cultures treated with ALS-CSF. The conditioned medium from the ALS-CSF exposed astroglial cultures induced degeneration in NSC-34 cells.ConclusionsOur study demonstrates that the astroglial cells contribute to the neuroinflammation-mediated neurodegeneration in the in vitro model of sporadic ALS.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0698-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.