Pervasive cross-disciplinarity has been a key factor in the genomics revolution.
No abstract
Crowd workers are distributed and decentralized. While decentralization is designed to utilize independent judgment to promote high-quality results, it paradoxically undercuts behaviors and institutions that are critical to high-quality work. Reputation is one central example: crowdsourcing systems depend on reputation scores from decentralized workers and requesters, but these scores are notoriously inflated and uninformative. In this paper, we draw inspiration from historical worker guilds (e.g., in the silk trade) to design and implement crowd guilds: centralized groups of crowd workers who collectively certify each other's quality through double-blind peer assessment. A two-week field experiment compared crowd guilds to a traditional decentralized crowd work model. Crowd guilds produced reputation signals more strongly correlated with ground-truth worker quality than signals available on current crowd working platforms, and more accurate than in the traditional model.
The ability to objectively assess academic performance is critical to rewarding academic merit, charting academic policy, and promoting science. Quintessential to performing these functions is first the ability to collect valid and current data through increasingly automated online interfaces. Moreover, it is crucial to remove disciplinary and other biases from these data, presenting them in ways that support insightful analysis at various levels. Existing systems are lacking in some of these respects. Here we present Scholar Plot (SP), an interface that harvests bibliographic and research funding data from online sources. SP addresses systematic biases in the collected data through nominal and normalized metrics. Eventually, SP combines synergistically these metrics in a plot form for expert appraisal, and an iconic form for broader consumption. SP's plot and iconic forms are scalable, representing equally well individual scholars and their academic units, thus contributing to consistent ranking practices across the university organizational structure. In order to appreciate the design principles underlying SP, in particular the informativeness of nominal vs. normalized metrics, we also present the results of an evaluation survey taken by senior faculty ( n = 28) with significant promotion and tenure assessment experience.
Paid crowdsourcing platforms suffer from low-quality work and unfair rejections, but paradoxically, most workers and requesters have high reputation scores. These inflated scores, which make high-quality work and workers difficult to find, stem from social pressure to avoid giving negative feedback. We introduce Boomerang, a reputation system for crowdsourcing that elicits more accurate feedback by rebounding the consequences of feedback directly back onto the person who gave it. With Boomerang, requesters find that their highlyrated workers gain earliest access to their future tasks, and workers find tasks from their highly-rated requesters at the top of their task feed. Field experiments verify that Boomerang causes both workers and requesters to provide feedback that is more closely aligned with their private opinions. Inspired by a game-theoretic notion of incentive-compatibility, Boomerang opens opportunities for interaction design to incentivize honest reporting over strategic dishonesty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.