Covalent organic frameworks (COFs) have structures and morphologies closely resembling graphenes, whose modular construction permits atomiclevel manipulations. This, combined with their porous structure, makes them excellent catalyst supports. Here, the high electrocatalytic activity of a composite, formed by supporting Ni 3 N nanoparticles on a benzimidazole COF, for oxygen evolution reaction is shown. The composite oxidizes alkaline water with a near-record low overpotential of 230 mV @ 10 mA cm −2 (η 10 ). This high activity is attributed to the ability of the COF to confine the Ni 3 N nanoparticles to size regimes otherwise difficult to obtain and to its low band gap character (1.49 eV) arising from the synergy between the conducting Ni 3 N nanoparticles and the π-conjugated COF. The COF itself, as a metalfree self-standing framework, has an oxygen evolution reaction activity with η 10 of 400 mV. The periodic structure of the COF makes it serve as a matrix to disperse the catalytically active Ni 3 N nanoparticles favoring their high accessibility and thereby good charge-transport within the composite. This is evident from the amount of O 2 evolved (230 mmol h −1 g −1 ), which, to the best of our knowledge, is the highest reported. The work reveals the emergence of COF as supports for electrocatalysts.
The ordered modular structure of a covalent organic framework (COF) facilitates the selective incorporation of electronically active segments that can be tuned to function cooperatively. This designability inspires developing COFbased single-source white light emitters, required in nextgeneration solid-state lighting. Here, we present a new anthracene-resorcinol-based COF exhibiting white light emission. The keto−enol tautomers present in the COF give rise to dual emission, which can be tuned by the O-donor and Ndonor solvents. Importantly, when suspended in a solid polymer matrix, this dual emission is retained as both tautomers coexist. A mere 0.32 wt % loading of the COF in poly(methyl methacrylate) (PMMA) gives a solvent-free film with intense white light emission (CIE coordinates (0.35, 0.36)). From steady-state and time-resolved studies, the mechanism of the white light emission has been unambiguously assigned to fluorescence, with the blue emission originating from the π-stacked columns of anthracene, and the mixture of red and green from the keto−enol tautomerized resorcinol units. The study introduces the COF as a new class of readily processable, single-source white light emitter.
COFs represent a class of polymers with designable crystalline structures capable of interacting with active metal nanoparticles to form excellent heterogeneous catalysts. Many valuable ligands/monomers employed in making coordination/organic polymers are prepared via Heck and C-C couplings. Here, we report an amphiphilic triazine COF and the facile single-step loading of Pd0 nanoparticles into it. An 18–20% nano-Pd loading gives highly active composite working in open air at low concentrations (Conc. Pd(0) <0.05 mol%, average TON 1500) catalyzing simultaneous multiple site Heck couplings and C-C couplings using ‘non-boronic acid’ substrates, and exhibits good recyclability with no sign of catalyst leaching. As an oxidation catalyst, it shows 100% conversion of CO to CO2 at 150 °C with no loss of activity with time and between cycles. Both vapor sorptions and contact angle measurements confirm the amphiphilic character of the COF. DFT-TB studies showed the presence of Pd-triazine and Pd-Schiff bond interactions as being favorable.
Covalent organic frameworks (COFs) are crystalline organic polymers with tunable structures. Here, a COF is prepared using building units with highly flexible tetrahedral sp3 nitrogens. This flexibility gives rise to structural changes which generate mesopores capable of confining very small (<2 nm sized) non‐noble‐metal‐based nanoparticles (NPs). This nanocomposite shows exceptional activity toward the oxygen‐evolution reaction from alkaline water with an overpotential of 258 mV at a current density of 10 mA cm−2. The overpotential observed in the COF‐nanoparticle system is the best in class, and is close to the current record of ≈200 mV for any noble‐metal‐free electrocatalytic water splitting system—the Fe–Co–Ni metal‐oxide‐film system. Also, it possesses outstanding kinetics (Tafel slope of 38.9 mV dec−1) for the reaction. The COF is able to stabilize such small‐sized NP in the absence of any capping agent because of the COF–Ni(OH)2 interactions arising from the N‐rich backbone of the COF. Density‐functional‐theory modeling of the interaction between the hexagonal Ni(OH)2 nanosheets and the COF shows that in the most favorable configuration the Ni(OH)2 nanosheets are sandwiched between the sp3 nitrogens of the adjacent COF layers and this can be crucial to maximizing their synergistic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.