The effect of outlet thickness and outlet angle of the bladeless fan have been an alysed numerically on the aerodynamic performance of the bladeless fan. Five different aerofoil profiles have been considered for the present work is Eppler 479, Eppler169, Eppler 473, S1046 and S1048. The bladeless fan arrangement has been achieved by converting the aerodynamic models listed above. The ANSYS ICEM CFD 16.0 have been used to discretize the enclosure and bladeless fan through finite volume approach. The mesh model is then imported into ANSYS CFX 16.0 pre-processor for applying the required boundary conditions. The governing equations namely continuity and momentum are used to solve the flow physics through and across the bladeless fan and SST k-? turbulence model has been used to predict the turbulence in the bladeless fan. The effect of outlet thicknesses and outlet angles have been varied for all the five aerofoil configurations mentioned and the volumetric flow at inlet have been adjusted from 5 LPS to 80 LPS. Outlet thickness is varied from 0.8, 1.0, 1.3, 1.5 and 2 mm and the slit angle is varied from 20 degrees to 80 degrees in step of 10 degrees. The results predicted that Eppler 473 aerofoil profile showed better performance when the thickness of slit and outlet angle has been fixed constant as 1 mm and 70 degree respectively. Also, the maximum discharge flow ratio is recorded for an inlet volumetric flow rate of 80 LPS and it is found to be 34.37. The present numerical study substantiated that outlet thickness plays a dominant role on the bladeless fan’s aerodynamic performance compared to outlet angle and aerodynamic shape considered in this numerical analysis. The contours of velocity, streamline and pressure of the bladeless fan have been discussed.
Climate change and the major threat it poses to the environment and human lives is the major challenge the world faces today. To overcome this challenge, it is recommended that future automobiles have zero carbon exhaust emissions. Even though battery electric vehicles reduce carbon emissions relative to combustion engines, a carbon footprint still remains in the overall ecosystem unless the battery is powered by renewable energy sources. The proton exchange membrane fuel cell (PEMFC) is an alternate source for automotive mobility which, similar to battery electric vehicles, has zero carbon emissions from its exhaust pipe. Moreover, the typical system level efficiency of a PEMFC is higher than an equivalent internal combustion powertrain. This review article covers the background history, working principles, challenges and applications of PEMFCs for automotive transportation and power generation in industries. Since the performance of a PEMFC is greatly influenced by the design of the anode and cathode flow channels, an in-depth review has been carried out on different types of flow channel designs. This review reveals the importance of flow channel design with respect to uniform gas (reactant) distribution, membrane proton conductivity, water flooding and thermal management. An exhaustive study has been carried out on different types of flow channels, such as parallel, serpentine, interdigitated and bio-inspired, with respect to their performance and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.