Objective. This study aims to investigate the expression of neuronal transcription factor SOX11 in small-cell lung cancer (SCLC) and compare it with the expression of CD56 (nerve cell adhesion molecule), synaptophysin (Syn), chromogranin A (CgA), and thyroid transcription factor-1 (TTF-1) to explore the application value of SOX11 in the pathological diagnosis of SCLC. Methods. Immunohistochemical methods were used to detect the expression of SOX11, TTF-1, CD56, Syn, and CgA in 120 lung tumor tissues, and experimental results were analyzed using SPSS23.0 statistical software. Results. Immunohistochemical results showed that in the 120 lung tumor samples, SOX11 was highly expressed in SCLC and localized to the nucleus, with low or no expression in control carcinoid/lung neuroendocrine tumors, lung adenocarcinomas, and lung squamous cell carcinomas. Statistical analysis results revealed the following points. First, the expression of SOX11 was closely related to the tumor histological type. The expression of SOX11 in SCLC (positive rate of 63.33%) was significantly higher than that in carcinoid/neuroendocrine tumors (positive rate of 12.50%), lung adenocarcinoma (positive rate of 0%), and lung squamous cell carcinoma (positive rate of 0%). Second, immunohistochemical investigation of 60 SCLC cases revealed that the highest positive rates of CD56, TTF-1, and Syn, respectively, were 93.33 percent, 95 percent, and 86.67 percent. SOX11 also exhibited high sensitivity (0.633) and specificity (0.875) in SCLC. The positive rates of SOX11 and CgA were 63.33% and 50.00%, respectively. Statistical results revealed that the positive rate of CgA had no significant difference ( P > 0.05 ). Lastly, the combined use of antibodies SOX11, CgA, CD56, Syn, and TTF-1 was more beneficial to improving the diagnosis rate of SCLC than the single use of one or two antibodies. Conclusion. The expression of SOX11 in different histological types of lung tumors differs considerably. SOX11 is highly expressed in SCLC. SOX11 can be used as a beneficial supplement to the combination of classical neuroendocrine markers and in combination with CgA, CD56, Syn, and TTF-1 to assist in the diagnosis of SCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.