separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C 2 H 2 /C 2 H 4 have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.
Methionine aminopeptidase (MetAP) catalyzes the N-terminal methionine excision from the majority of newly synthesized proteins, which is an essential cotranslational process required for cell survival. As such, MetAP has become an appealing target for the development of antimicrobial therapeutics with novel mechanisms of action. By screening a library of small organic molecules, we previously discovered a class of compounds that selectively inhibit the Fe(II)-form of MetAP. Herein, we demonstrate that some of these compounds and their newly synthesized derivatives halt the growth of Escherichia coli and Staphylococcus aureus cells with significant potency. The most potent compound inhibited methicillin-resistant S. aureus (MRSA) growth with an IC50 value of 1 µM and MIC of 0.7 µg/ml. Two cell-based assays were used to verify that MetAP is the intracellular target in E. coli cells. These findings can serve as foundation for the development of novel therapeutics against an ever increasing threat by drug resistant staphylococcal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.