The hyper-Rayleigh scattering first hyperpolarizability of a series of extended tetrathiafulvalene (TTF) and TTF derivatives have been theoretically investigated using density functional theory to explore their use as potential cation sensor.
Coordination of an axial ligand to metal center to enhance the second-order nonlinear optical(NLO) response of a two-dimensional bis(salicylaldiminato) zinc(II) Schiff-base complex is an unprecedented model. The second-order NLO responses of a series of axially substituted bis(salicylaldiminato) zinc(II) Schiff-base complexes were explored according to the finite field(FF) method at CAM-B3LYP/6-31+G(d) level(LANL2DZ basis set for metal atoms). The results show that the second-order NLO properties can be effectively tuned by exchanging the donor and accepter of the axial ligand and extending the length of the conjugated bridge along the axial direction. A system involving the electron acceptor along the appropriate direction has a large three-dimensional second-order NLO response. Meanwhile, time dependent density functional theory(TD-DFT) method was employed to calculate the physical parameters of excited states. The results show that the Y-and Z-polarized transitions of the zinc(II) Schiff-base complex are the first and second excited states, respectively, and have a low-lying excited energy. Although the X-polarized transition has a high excited energy, the large oscillator strength indicates that it will significantly contribute to the second-order NLO response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.