The rapid development of electric vehicle (EV) technology and the consequent charging demand have brought challenges to the stable operation of distribution networks (DNs). The problem of the collaborative optimization of the charging scheduling of EVs and voltage control of the DN is intractable because the uncertainties of both EVs and the DN need to be considered. In this paper, we propose a deep reinforcement learning (DRL) approach to coordinate EV charging scheduling and distribution network voltage control. The DRL-based strategy contains two layers, the upper layer aims to reduce the operating costs of power generation of distributed generators and power consumption of EVs, and the lower layer controls the Volt/Var devices to maintain the voltage stability of the distribution network. We model the coordinate EV charging scheduling and voltage control problem in the distribution network as a Markov decision process (MDP). The model considers uncertainties of charging process caused by the charging behavior of EV users, as well as the uncertainty of uncontrollable load, system dynamic electricity price and renewable energy generation. Since the model has a dynamic state space and mixed action outputs, a framework of deep deterministic policy gradient (DDPG) is adopted to train the two-layer agent and the policy network is designed to output discrete and continuous control actions. Simulation and numerical results on the IEEE-33 bus test system demonstrate the effectiveness of the proposed method in collaborative EV charging scheduling and distribution network voltage stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.