Recently, integrated machine learning (ML) metaheuristic algorithms, such as the artificial bee colony (ABC) algorithm, genetic algorithm (GA), gray wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and water cycle algorithm (WCA), have become predominant approaches for landslide displacement prediction. However, these algorithms suffer from poor reproducibility across replicate cases. In this study, a hybrid approach integrating k-fold cross validation (CV), metaheuristic support vector regression (SVR), and the nonparametric Friedman test is proposed to enhance reproducibility. The five previously mentioned metaheuristics were compared in terms of accuracy, computational time, robustness, and convergence. The results obtained for the Shuping and Baishuihe landslides demonstrate that the hybrid approach can be utilized to determine the optimum hyperparameters and present statistical significance, thus enhancing accuracy and reliability in ML-based prediction. Significant differences were observed among the five metaheuristics. Based on the Friedman test, which was performed on the root mean square error (RMSE), Kling-Gupta efficiency (KGE), and computational time, PSO is recommended for hyperparameter tuning for SVR-based displacement prediction due to its ability to maintain a balance between precision, computational time, and robustness. The nonparametric Friedman test is promising for presenting statistical significance, thus enhancing reproducibility.
A landslide susceptibility model based on a metaheuristic optimization algorithm (germinal center optimization (GCO)) and support vector classification (SVC) is proposed and applied to landslide susceptibility mapping in the Three Gorges Reservoir area in this paper. The proposed GCO-SVC model was constructed via the following steps: First, data on 11 influencing factors and 292 landslide polygons were collected to establish the spatial database. Then, after the influencing factors were subjected to multicollinearity analysis, the data were randomly divided into training and testing sets at a ratio of 7:3. Next, the SVC model with 5-fold cross-validation was optimized by hyperparameter space search using GCO to obtain the optimal hyperparameters, and then the best model was constructed based on the optimal hyperparameters and training set. Finally, the best model acquired by GCO-SVC was applied for landslide susceptibility mapping (LSM), and its performance was compared with that of 6 popular models. The proposed GCO-SVC model achieved better performance (0.9425) than the genetic algorithm support vector classification (GA-SVC; 0.9371), grid search optimized support vector classification (GRID-SVC; 0.9198), random forest (RF; 0.9085), artificial neural network (ANN; 0.9075), K-nearest neighbor (KNN; 0.8976), and decision tree (DT; 0.8914) models in terms of the area under the receiver operating characteristic curve (AUC), and the trends of the other metrics were consistent with that of the AUC. Therefore, the proposed GCO-SVC model has some advantages in LSM and may be worth promoting for wide use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.