AbstractBackground:Metamorphosis remains one of the most complicated and poorly understood processes in insects. This is particularly so for the very dynamic transformations that take place within the pupal sheath of holometabolous insects. Only few studies address these transformations especially with regard to cranial structures of those holometabolous species where the larval and adult forms have a similar diet. It thus remains unclear to what extent the internal structures undergo histolysis and rebuilding. Here, the development of the brain and skeleto-muscular system of the head of Chrysopa pallens (Rambur, 1838) is studied. This species is a predator of aphids in the larval and adult stage.Results:We used micro-computed-tomography (µ-CT) to study the transformations of the larval, prepupal and pupal head within the cocoon. We first assessed the morphological differences and similarities between the stages. We then determined the point in time when the compound eyes appear and describe the re-orientation of the head capsule which transforms the prognathous larva into a hypognathous adult. The internal head muscles are distinctly more slender in larvae than adults. In addition, the adults have a significantly larger brain which is likely needed for the processing of the signals obtained by the adults’ vastly expanded sensory organs that are presumably needed for dispersal and mating. Our study shows that the histolysis and modification of the inner muscles and skeletal elements take place within the prepupa. The central nervous system persists throughout metamorphosis but its morphology changes significantly. Conclusion:Our study reveals that not only the inner structures, but also the outer morphology continues to change after the final larval moult. The adult cuticle and internal structures form gradually within the cocoon. The histolysis and rebuilding begins with the skeletal elements and is followed by changes in the central nervous system before it concludes with modifications of the musculature. This order of events is likely ancestral for Holometabola because it is also known from Hymenoptera, Diptera, Mecoptera, and Coleoptera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.