Neuroptera (lacewings) and allied orders Megaloptera (dobsonflies, alderflies) and Raphidioptera (snakeflies) are predatory insects and together make up the clade Neuropterida. The higher‐level relationships within Neuropterida have historically been widely disputed with multiple competing hypotheses. Moreover, the evolution of important biological innovations among various Neuropterida families, such as the origin, timing and direction of transitions between aquatic and terrestrial habitats of larvae, remains poorly understood. To investigate the origin and diversification of lacewings and their allies, we undertook phylogenetic analyses of mitochondrial genomes of all families of Neuropterida using Bayesian inference, maximum likelihood and maximum parsimony methods. We present a robust, fully resolved phylogeny and divergence time estimation for Neuropterida with strong statistical support for almost all nodes. Mitochondrial sequence data are typified by significant compositional heterogeneity across lineages, and parsimony and models assuming homogeneous rates did not recover Neuroptera as monophyletic. Only a model accounting for compositional heterogeneity (i.e. CAT‐GTR) recovered all orders of Neuropterida as monophyletic. Significant findings of the mitogenomic phylogeny include recovering Raphidioptera as sister to Megaloptera plus Neuroptera. The sister family of all other lacewings are the dusty‐wings (Coniopterygidae), rather than Nevrorthidae. Nevrorthidae are instead returned to their traditional position as the sister group of the spongilla‐flies (Sisyridae) and closely related to Osmylidae. Our divergence time analysis indicates that the Mesozoic was indeed a ‘golden age’ for lacewings, with most families of Neuropterida diverging during the Triassic and Jurassic and all extant families present by the Early Cretaceous. Based on ancestral character state reconstructions of larval habitat we evaluate competing hypotheses regarding the life style of early neuropteridan larvae as either aquatic or terrestrial.
Amyloid-β peptide (Aβ) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Aβ induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Aβ-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Aβ and ceramide induced OLG death. In addition, Aβ activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Aβ cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Aβ-induced OLG death. Glutathione (GSH) precursors inhibited Aβ activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Aβ-induced death. These results suggest that Aβ induces OLG death by activating the nSMase–ceramide cascade via an oxidative mechanism.
The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.
Fishflies (Corydalidae: Chauliodinae) are one of the main groups of the basal holometabolous insect order Megaloptera, with ca. 130 species distributed worldwide. A number of genera from the Southern Hemisphere show remarkably disjunctive distributions and are considered to be the austral remnants or “living fossils” of Gondwana. Hitherto, the evolutionary history of fishflies remains largely unexplored due to limited fossil record and incomplete knowledge of phylogenetic relationships. Here we describe two significant fossil species of fishflies, namely Eochauliodes striolatus gen. et sp. nov. and Jurochauliodes ponomarenkoi Wang & Zhang, 2010 (original designation for fossil larvae only), from the Middle Jurassic of Inner Mongolia, China. These fossils represent the earliest fishfly adults. Furthermore, we reconstruct the first phylogenetic hypothesis including all fossil and extant genera worldwide. Three main clades within Chauliodinae are recognized, i.e. the Dysmicohermes clade, the Protochauliodes clade, and the Archichauliodes clade. The phylogenetic and dispersal-vicariance (DIVA) analyses suggest Pangaean origin and global distribution of fishflies before the Middle Jurassic. The generic diversification of fishflies might have happened before the initial split of Pangaea, while some Gondwanan-originated clades were likely to be affected by the sequential breakup of Pangaea. The modern fauna of Asian fishflies were probably derived from their Gondwanan ancestor but not the direct descendents of the Mesozoic genera in Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.