A range of iron binding dendrimers terminated with hexadentate ligands formed from hydroxypyridinone, hydroxypyranone, and catechol moieties have been synthesized in order to investigate their potential as clinically useful iron(III)-selective chelators capable of removing dietary iron from the gastrointestinal tract and preventing the development of iron overload typical of haemochromatosis and thalassaemia intermedia. The iron chelating abilities of these molecules have been characterized by MALDI-TOF mass spectrometry and UV spectrometry. Hydroxypyridinone-terminated dendrimers were found to possess a high affinity and selectivity for iron(III). A hydroxypyridinone-based dendrimer was demonstrated to be highly efficient at reducing the absorption of iron(III) in rat intestine. This family of dendrimers may find an application in the treatment of iron overload.
Iron overload is a critical clinical problem that can be prevented by the use of iron-specific chelating agents. An alternative method of relieving iron overload is to reduce the efficiency of iron absorption from the intestine by administering iron chelators, which can bind iron irreversibly to form nontoxic, kinetically inert complexes that are not absorbed and are therefore excreted in the feces. A series of polymeric chelators with various iron binding capacities were therefore prepared as nonabsorbable iron-selective additives. A novel 3-hydroxypyridin-4-one hexadentate ligand CP254 has been synthesized and incorporated into polymers by copolymerisation with N, N-dimethylacrylamide (DMAA), and N, N'-ethylene-bis-acrylamide (EBAA) using (NH4)2S2O8 as the initiator. The physicochemical properties of CP254 were determined, namely, log K = 33.2 and pFe(3+) = 27.24. The chelating capacity of the CP254-DMAA copolymers was determined at physiological pH. The iron(III) chelation was found to achieve 80% capacity after 1 h and was virtually complete after 5 h, which is much quicker than that of the commercially available chelating resin Chelex100. The chelating copolymers were found to be readily regenerated and reusable. The copolymers possess a high selectivity for iron(III). The conditional affinity (log K') for iron(III) at pH 7.46 was determined to be 26.55, which is not significantly different to that of the hexadentate ligand CP254 (log K' = 26.47). In vitro perfusion studies indicate that the polymeric chelators described in this study can reduce iron absorption from the intestine.
Fe deficiency and Fe-deficiency anaemia are common in patients with inflammatory bowel disease (IBD). Traditional clinical markers of Fe status can be skewed in the presence of inflammation, meaning that a patient's Fe status can be misinterpreted. Additionally, Fe absorption is known to be down-regulated in patients with active IBD. However, whether this is the case for quiescent or mildly active disease has not been formally assessed. The present study aimed to investigate the relationship between Fe absorption, Fe requirements and standard haematological indices in IBD patients without active disease. A group of twenty-nine patients with quiescent or mildly active IBD and twenty-eight control subjects undertook an Fe absorption test that measured sequential rises in serum Fe over 4 h following ingestion of 200 mg ferrous sulphate. At baseline, serum Fe, transferrin saturation, non-transferrin-bound Fe (NTBI), ferritin and soluble transferrin receptor were all measured. Thereafter (30-240 min), only serum Fe and NTBI were measured. Fe absorption did not differ between the two groups (P¼0·9; repeated-measures ANOVA). In control subjects, baseline haematological parameters predicted Fe absorption (i.e. Fe requirements), but this was not the case for patients with IBD. Fe absorption is normal in quiescent or mildly active IBD patients but standard haematological parameters do not accurately predict Fe requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.