A parameterized dynamics analysis model of legged lander with adaptive landing gear was established. Based on the analysis model, the landing performances under various landing conditions were analyzed by the optimized Latin hypercube experimental design method. In order to improve the landing performances, a hierarchical optimization method was proposed considering the uncertainty of landing conditions. The optimization problem was divided into a higher level (hereafter the "leader") and several lower levels (hereafter the "follower"). The followers took conditioning factors as design variables to find out the worst landing conditions, while the leader took buffer parameters as design variables to better the landing performance under worst conditions. First of all, sensitivity analysis of landing conditioning factors was carried out according to the results of experimental design. After the sensitive factors were screened out, the response surface models were established to reflect the complicated relationships between sensitive conditioning factors, buffer parameters and landing performance indexes. Finally, the response surface model was used for hierarchical optimization iteration to improve the computational efficiency. After selecting the optimum buffer parameters from the solution set, the dynamic model with the optimum parameters was simulated again under the same landing conditions as the simulation before. After optimization, nozzle performance against damage is improved by 5.24%, the acceleration overload is reduced by 5.74%, and the primary strut improves its performance by 21.10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.