Resveratrol (3,4′,5-trihy- droxystilbene), a natural phytoalexin polyphenol, exhibits anti-oxidant, anti-inflammatory, and anti-carcinogenic properties. This phytoalexin is well-absorbed and rapidly and extensively metabolized in the body. Inflammation is an adaptive response, which could be triggered by various danger signals, such as invasion by microorganisms or tissue injury. In this review, the anti-inflammatory activity and the mechanism of resveratrol modulates the inflammatory response are examined. Multiple experimental studies that illustrate regulatory mechanisms and the immunomodulatory function of resveratrol both in vivo and in vitro. The data acquired from those studies are discussed.
L-Glutamine is a nutritionally semi-essential amino acid for proper growth in most cells and tissues, and plays an important role in the determination and guarding of the normal metabolic processes of the cells. With the help of transport systems, extracellular L-glutamine crosses the plasma membrane and is converted into alpha-ketoglutarate (AKG) through two pathways, namely, the glutaminase (GLS) I and II pathway. Reversely, AKG can be converted into glutamine by glutamate dehydrogenase (GDH) and glutamine synthetase (GS), or be converted into CO2 via the tricarboxylic acid (TCA) cycle and provide energy for the cells. Different steps of glutamine metabolism (the glutamine-AKG axis) are regulated by several factors, rendering the glutamine-AKG axis a potential target to counteract cancer. Moreover, intracellular glutamine plays an important role in cellular homeostasis not only as a precursor for protein synthesis, but also for its nutritional roles in cell growth, lipid metabolism, insulin secretion, and so on. The main objective of this review is to highlight the metabolic pathways of glutamine to AKG, with special emphasis on nutritional and therapeutic use of glutamine-AKG axis to improve the health and well-being of animals and humans.
This study was conducted to determine the effect of dietary supplementation of a low dose of chito-oligosaccharide (COS) on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. A total of 120 weaned pigs (21 d of age; 7.86 ± 0.22 kg average BW) were randomly assigned (6 pens/diet; 10 pigs/pen) to 2 dietary treatments consisting of a basal diet (negative control) or the basal diet supplemented with COS (30 mg/kg) for a 14-d period. Six randomly selected piglets from each treatment were killed for blood and tissue sampling. No significant differences were observed in ADG, ADFI, and G:F between treatment and the control group. Piglets fed the COS-supplemented diet had greater ( < 0.05) stomach pH than those fed the control diet on d 14 postweaning. Dietary supplementation with COS reduced villus height ( < 0.05) and villus height:crypt depth ( < 0.05) in the ileum. Dietary COS supplementation tended to reduce villus height in the duodenum ( = 0.065) and jejunum ( = 0.058). There was no effect on crypt depth in the intestinal segments of treatment group. Piglets fed the COS-supplemented diet increased ( < 0.05) the number of intraepithelial lymphocytes in duodenum or jejunum and goblet cells of ileum. However, COS decreased ( < 0.05) the number of intraepithelial lymphocytes in ileum of weaned piglets. The concentrations of IL-10 (duodenum, jejunum, and ileum) and secretory immunoglobulin (SIgA; duodenum and ileum) were higher in piglets fed the COS-supplemented diet compared with control ( < 0.05). Dietary COS supplementation reduced ( < 0.05) the concentration of total antioxidant capacity and superoxide dismutase of the jejunum or ileum. The mRNA expression of occludin in the ileum and ZO-1 in jejunum and ileum had a significant change in piglets fed the COS-supplemented diet compared with the control group ( < 0.05). In conclusion, these results indicated that dietary COS supplementation at 30 mg/kg had no effects on promoting growth performance and tended to reduce villus height in the duodenum or jejunum of weaned piglets. The results further showed that supplemental COS at this level may cause an immune and oxidative stress response in small intestine and have compromised the intestinal barrier integrity in weaned piglets. The research will provide guidance on the low dosage of COS supplementation on weaning pigs.
Oxygen‐related electrocatalysis, including those used for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), play a central role in green‐energy related technologies. Rational fabrication of effective oxygen electrocatalysts is crucial for the development of oxygen related energy devices, such as fuel cells and rechargeable metal–air batteries. Recently, owing to their tunable compositions and microstructures, metal–organic frameworks (MOFs) based materials have drawn extensive attention as nonprecious oxygen electrocatalysts. Various strategies have been developed to fabricate MOF‐based electrocatalysts and regulate their active sites, such as heterometal doping, defect engineering, morphology tuning, heterostructure construction, and hybridization. In this review, by focusing on various modulation strategies aiming at active sites, the recent advances of MOF‐based electrocatalysts are summarized. The synthetic methods used to synthesize various MOF‐based oxygen electrocatalysts are discussed, followed by the underlying engineering mechanisms required to allow performance enhancement, and finally some existing challenges that hinder for their practical applications are discussed alongside a perspective on their possible future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.