A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET threephase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.Key words hybrid motorcycle, BLDC, asymmetric design of eccentric air-gap, constant power operation.
This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM). The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission (CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together according to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous stateof-charge (SOC), pollution emissions etc. are given and discussed. Lastly experimental data verify our simulation results.
Thrust ripple and density greatly impact the performance of the linear machine and other linear actuators, causing positioning control precision, dynamic performance, and efficiency issues. Generalized pole-pair combinations are difficult to satisfy both the thrust and ripple for double salient reluctance linear machines. In this paper, a DC-Biased vernier reluctance linear machine (DCB-VRLM) is proposed to solve the abovementioned issues. The key to the proposed design is to reduce the ripple and enhance the thrust density with non-uniform teeth by utilizing and optimizing the modulated flux in the air gap. To effectively verify the proposed design, the DCB-VRLMs with different winding pole pairs and secondary poles are compared. The 12-slot/10-pole combination is chosen to adopt a non-uniform air gap structure. Moreover, the energy distribution of AC/DC winding is studied and optimized to further enhance the performance of the proposed DCB-VRLM. The results indicate that the DCB-VRLM with the non-uniform air gap has a lower thrust ripple, better overload capability, and higher thrust density, which confirms its superiority in long-stroke linear rail transit and vertical elevator applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.