Prostate cancer is one of the most prevalent cancers among men. Early detection of this cancer could effectively increase the survival rate of the patient. In this paper, we propose a Bi-attention adversarial network for the prostate cancer segmentation automatically. The proposed architecture consists of the generator network and discriminator network. The generator network aims to generate the predicted mask of the input image, while the discriminator network aims to further improve the generator performance with adversarial learning by discriminating the generator predicted mask and the true label mask. For better improving the segmentation performance, we combine two attention mechanisms with the generator network to learn more global and local features. Extensive experiments on the T2-weighted (T2W) images have demonstrated our model could achieve state-of-the-art segmentation performance compared with other methods.
In this paper, we propose an efficient point cloud classification method via manifold learning based feature representation. Different from conventional methods, we use manifold learning algorithms to embed point cloud features for better considering the geometric continuity on the surface. Then, the nature of point cloud can be acquired in low dimensional space, and after being concatenated with features in the original three-dimensional (3D) space, both the capability of feature representation and the classification network performance can be improved. We explore three traditional manifold algorithms (
i.e.
, Isomap, Locally-Linear Embedding, and Laplacian eigenmaps) in detail, and finally, we select the Locally-Linear Embedding (LLE) algorithm due to its low complexity and locality consistency preservation. Furthermore, we propose a neural network based manifold learning (NNML) method to implement manifold learning based non-linear projection. Experiments demonstrate that the proposed two manifold learning methods can obtain better performances than the state-of-the-art methods, and the obtained mean class accuracy (mA) and overall accuracy (oA) can reach 91.4% and 94.4%, respectively. Moreover, because of the improved feature learning capability, the proposed NNML method can also have better classification accuracy on models with prominent geometric shapes. To further demonstrate the advantages of PointManifold, we extend it as a plug and play method for point cloud classification task, which can be directly used with existing methods and gain a significant improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.