Background Muscle fatigue is a crucial indicator to determine whether training is in place and to protect trainers. Purpose To make full use of morphological information of surface EMG and ECG signals in the time domain, a new idea and method for the fatigue assessment of exercise muscles based on data fusion is proposed in this paper. Methods sEMG and ECG time series with the same length were obtained by signal preprocessing and sequence normalization, feature extraction of sequence tenses was realized by a deep learning network based on sequential convolution and signal fusion model of muscle fatigue evaluation was established by D-S evidence theory. Experiment Thirty volunteers were recruited and divided into three groups. ECG signals and sEMG signals at the biceps brachii of the right upper limb were monitored in a 20-minute exercise cycle. Results The prediction result of TCN based on time domain signal is better than the commonly used KNN and SVM recognition algorithm, and the recognition accuracy of relaxed, excessive and fatigue by D-S fusion was 89%, 86%, 88.5%. The accuracy was 0.9055, 0.9494 and 0.9269, respectively. The recall rates of the three conditions were 0.9303, 0.9570 and 0.9435. The F-score of the three conditions was 0.8911, 0.8764 and 0.8837, respectively. Conclusion Based on time series and time series convolutional network, sEMG and ECG fusion of motor muscle recognition method can better distinguish different state information and has certain practical value in the fields of muscle evaluation, clinical diagnosis, wearable devices and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.