Deep learning achieves state-of-the-art results in many tasks in computer vision and natural language processing. However, recent works have shown that deep networks can be vulnerable to adversarial perturbations, which raised a serious robustness issue of deep networks. Adversarial training, typically formulated as a robust optimization problem, is an effective way of improving the robustness of deep networks. A major drawback of existing adversarial training algorithms is the computational overhead of the generation of adversarial examples, typically far greater than that of the network training. This leads to the unbearable overall computational cost of adversarial training. In this paper, we show that adversarial training can be cast as a discrete time differential game. Through analyzing the Pontryagin's Maximum Principle (PMP) of the problem, we observe that the adversary update is only coupled with the parameters of the first layer of the network. This inspires us to restrict most of the forward and back propagation within the first layer of the network during adversary updates. This effectively reduces the total number of full forward and backward propagation to only one for each group of adversary updates. Therefore, we refer to this algorithm YOPO (You Only Propagate Once). Numerical experiments demonstrate that YOPO can achieve comparable defense accuracy with approximately 1/5 ∼ 1/4 GPU time of the projected gradient descent (PGD) algorithm [15] . 2 * Equal Contribution 2 Our codes are available at https://github.com/a1600012888/YOPO-You-Only-Propagate-Once Preprint. Under review.
The invariance principle from causality is at the heart of notable approaches such as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD) generalization failures. Despite the promising theory, invariance principle-based approaches fail in common classification tasks, where invariant (causal) features capture all the information about the label. Are these failures due to the methods failing to capture the invariance? Or is the invariance principle itself insufficient? To answer these questions, we revisit the fundamental assumptions in linear regression tasks, where invariance-based approaches were shown to provably generalize OOD. In contrast to the linear regression tasks, we show that for linear classification tasks we need much stronger restrictions on the distribution shifts, or otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions on distribution shifts in place, we show that the invariance principle alone is insufficient. We prove that a form of the information bottleneck constraint along with invariance helps address key failures when invariant features capture all the information about the label and also retains the existing success when they do not. We propose an approach that incorporates both of these principles and demonstrate its effectiveness in several experiments.
Generative Flow Networks or GFlowNets are related to Monte-Carlo Markov chain methods (as they sample from a distribution specified by an energy function), reinforcement learning (as they learn a policy to sample composed objects through a sequence of steps), generative models (as they learn to represent and sample from a distribution) and amortized variational methods (as they can be used to learn to approximate and sample from an otherwise intractable posterior, given a prior and a likelihood). They are trained to generate an object x through a sequence of steps with probability proportional to some reward function R(x) (or exp(−E(x)) with E(x) denoting the energy function), given at the end of the generative trajectory. Like for other RL settings where the reward is only given at the end, the efficiency of training and credit assignment may suffer when those trajectories are longer. With previous GFlowNet work, no learning was possible from incomplete trajectories (lacking a terminal state and the computation of the associated reward). In this paper, we consider the case where the energy function can be applied not just to terminal states but also to intermediate states. This is for example achieved when the energy function is additive, with terms available along the trajectory. We show how to reparameterize the GFlowNet state flow function to take advantage of the partial reward already accrued at each state. This enables a training objective that can be applied to update parameters even with incomplete trajectories. Even when complete trajectories are available, being able to obtain more localized credit and gradients is found to speed up training convergence, as demonstrated across many simulations.
Black-box optimization formulations for biological sequence design have drawn recent attention due to their promising potential impact on the pharmaceutical industry. In this work, we propose to unify two seemingly distinct worlds: likelihood-free inference and black-box sequence design, under one probabilistic framework. In tandem, we provide a recipe for constructing various sequence design methods based on this framework. We show how previous drug discovery approaches can be "reinvented" in our framework, and further propose new probabilistic sequence design algorithms. Extensive experiments illustrate the benefits of the proposed methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.