GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.
Background Lignin is a major restriction factor for the industrial production of biomass resources, such as pulp and bioenergy. Eucalyptus is one of the most important sources of pulp and bioenergy. After polyploidization, the lignin content of forest trees is generally reduced, which is considered a beneficial genetic improvement. However, the differences in the lignin content between triploid and diploid Eucalyptus and the underlying regulatory mechanism are still unclear. Results We conducted a comprehensive analysis at the phenotypic, transcriptional and metabolite levels between Eucalyptus urophylla triploids and diploids to reveal the effects of polyploidization on the lignin content and lignin metabolic pathway. The results showed that the lignin content of Eucalyptus urophylla triploid stems was significantly lower than that of diploids. Lignin-related metabolites were differentially accumulated between triploids and diploids, among which coniferaldehyde, p-coumaryl alcohol, sinapaldehyde and coniferyl alcohol had significant positive correlations with lignin content, indicating that they might be primarily contributing metabolites. Most lignin biosynthetic genes were significantly downregulated, among which 11 genes were significantly positively correlated with the lignin content and above metabolites. Furthermore, we constructed a co-expression network between lignin biosynthetic genes and transcription factors based on weighted gene co-expression network analysis. The network identified some putative orthologues of secondary cell wall (SCW)-related transcription factors, among which MYB52, MYB42, NAC076, and LBD15 were significantly downregulated in Eucalyptus urophylla triploids. In addition, potential important transcription factors, including HSL1, BEE3, HHO3, and NAC046, also had high degrees of connectivity and high edge weights with lignin biosynthetic genes, indicating that they might also be involved in the variation of lignin accumulation between triploid and diploid Eucalyptus urophylla. Conclusions The results demonstrated that some lignin-related metabolites, lignin biosynthetic genes and transcription factors in Eucalyptus urophylla triploids may be relatively sensitive in response to the polyploidization effect, significantly changing their expression levels, which ultimately correlated with the varied lignin content. The analysis of the underlying formation mechanism could provide beneficial information for the development and utilization of polyploid biomass resources, which will be also valuable for genetic improvement in other bioenergy plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.