This study investigates the effects of culture, robot appearance and task on human-robot interaction. We propose a model with culture (Chinese, Korean and German), robot appearance (anthropomorphic, zoomorphic and machinelike) and task (teaching, guide, entertainment and security guard) as factors, and analyze these factors' effects on the robot's likeability, and people's active response to, engagement with, trust in and satisfaction with the robot. We conducted a laboratory experiment with 108 participants to test the model and performed Repeated ANOVA and Kruskal Wallis Test on the data. The results show that cultural differences exist in participants' perception of likeability, engagement, trust and satisfaction; a robot's appearance affects its likeability, while the task affects participants' active response and engagement. We found the participants expected the robot appearance to match its task only in the interview but not in the subjective ratings. Interaction between culture and task indicates that participants from low-context cultures may have significantly decreased engagement when the sociability of a task is lowered. We found strong and positive correlations between interaction performance (active response and engagement) and preference (likeability, trust and satisfaction) in the human-robot interaction.
Ethylene response factor (ERF) proteins regulate a variety of stress responses in plant. JERF1, a tomato ERF protein, can be induced by abscisic acid (ABA). Overexpression of JERF1 enhanced the tolerance of transgenic tobacco to high salt concentration, osmotic stress, and low temperature by regulating the expression of stress-responsive genes by binding to DRE/CRT and GCC-box cis-elements. In this research, we further report that overexpression of JERF1 significantly enhanced drought tolerance of transgenic rice. The overexpression activated the expression of stress-responsive genes and increased the synthesis of the osmolyte proline by regulating the expression of OsP5CS, encoding the proline biosynthesis key enzyme deltal-pyrroline-5-carboxylate synthetase. JERF1 also activated the expression of two ABA biosynthesis key enzyme genes, OsABA2 and Os03g0810800, and increased the synthesis of ABA in rice. Analysis of cis-elements of JERF1-targeted genes pointed to the existence of DRE/CRT and/or GCC box in their promoters, indicating that JERF1 could activate the expression of related genes in rice by binding to these cis-elements. Unlike some other ERF proteins, constructive overexpression of JERF1 did not change the growth and development of transgenic rice, which makes JEFR1 a potentially useful source in breeding for greater tolerance to abiotic stress.
Ethylene response factor (ERF) proteins play important roles in regulating plant stress response and development. Our previous studies have shown that JERF3 activates the expression of oxidative stress responsive genes in transgenic tobacco and enhances tolerance to salt, drought, and freezing, indicating that JERF3 is a very important transcriptional regulator in dicot plants. In the study reported here, we further addressed the regulatory function of JERF3 in a monocot, rice, by generating transgenic rice plants overexpressing JERF3 and comparing these with non-transgenic rice plants for physiological and molecular alterations and tolerance to drought and osmotic stresses. Growth and development under normal growth conditions were the same in both the transgenic and non-transgenic rice. Interestingly, the JERF3 transgenic plants exhibited better stress tolerance, whereas the non-transgenic rice seedlings showed serious stress symptoms and ultimately died after the drought and osmotic treatments. Biochemical analysis revealed that the contents of soluble sugars and proline were significantly increased in transgenic rice compared with non-transgenic plants under dehydration conditions. In addition, overexpression of JERF3 in rice led to the up-regulated expression of two OsP5CS genes in response to drought treatment compared with their expression in non-transgenic plants. JERF3 also activated the expression of stress-responsive genes, including WCOR413-like, OsEnol, and OsSPDS2, in transgenic rice under normal growth conditions. These data suggest that JERF3 plays important roles in transgenic rice and that it is likely to be beneficial in engineering crop plants with improved tolerance to drought and osmotic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.