As the intrinsic origin of the hypothesis for β-amyloid (Aβ) from Alzheimer’s disease, histidine behaviors were found to play a crucial role in Aβ aggregation. To investigate the histidine behaviors during the early stage of aggregation, Aβ40/42 pentamers with different histidine isomer states were simulated at the atomic level. Results show that five Aβ40 (δδδ) and Aβ42 (εδδ) monomers can rapidly decrease the aggregation threshold, promote stable pentamer formation, and increase pentamer contents by 51.8% and 56.7%, respectively, as compared with the values of their wild-type (εεε) counterparts. Additionally, pentamers of Aβ40 (δδδ) and Aβ42 (εδδ) have different aggregation pathways and disassembly species, Tr+D and Te+M, during the growth of the pentamer. This work discloses the significance of histidine tautomerization in Aβ aggregation, implying a potential way to control Aβ aggregation and develop the assembly inhibitors.
The aggregation of amyloid-β (Aβ) peptide induced by Cu(2+) is a key factor in development of Alzheimer's disease (AD), and metal ion chelation therapy enables treatment of AD. Three CQi (i = 1, 2, and 3 with R = H, Cl, and NO2, respectively) drugs had been verified experimentally to be much stronger inhibitors than the pioneer clioquinol (CQ) in both disaggregation of Aβ40 aggregate and reduction of toxicity induced by Cu(2+) binding at low pH. Due to the multiple morphologies of Cu(2+)-Aβ40 complexes produced at different pH states, we performed a series of molecular dynamics simulations to explain the structural changes and morphology characteristics as well as intrinsic disaggregation mechanisms of three Cu(2+)-Aβ40 models in the presence of any of the three CQi drugs at both low and high pH states. Three inhibition mechanisms for CQi were proposed as "insertion", "semi-insertion", and "surface" mechanisms, based on the morphologies of CQi-model x (CQi-x, x = 1, 2, and 3) and the strengths of binding between CQi and the corresponding model x. The insertion mechanism was characterized by the morphology with binding strength of more than 100 kJ/mol and by CQi being inserted or embedded into the hydrophobic cavity of model x. In those CQi-x morphologies with lower binding strength, CQi only attaches on the surface or inserts partly into Aβ peptide. Given the evidence that the binding strength is correlated positively with the effectiveness of drug to inhibit Aβ aggregation and thus to reduce toxicity, the data of binding strength presented here can provide a reference for one to screen drugs. From the point of view of binding strength, CQ2 is the best drug. Because of the special role of Asp23 in both Aβ aggregation and stabilizing the Aβ fibril, the generation of a H-bond between CQ3 and Asp23 of the Aβ40 peptide is believed to be responsible for CQ3 having the strongest disaggregation capacity. Therefore, besides strong binding, stronger propensity to H-bond with Asp23 would be another key factor to be taken seriously into account in drug screens. Meanwhile, the structural characteristics of drug CQi itself are also worthy of attention. First, the increasing polarity from CQ1 and CQ2 to CQ3 in turn results in increasing probability and strength of the interaction between the drug and the N-terminal (NT) region of Aβ40, which obviously inhibits Aβ peptide aggregation induced by Cu(2+) binding. Second, both the benzothiazole ring and phenol ring of CQi can overcome the activation energy barrier (∼16 kJ/mol) to rotate flexibly around the intramolecular C7-N14 bond to achieve the maximum match and interaction with the ambient Aβ40 residues. Such a structural feature of CQi paves the new way for ones in selection and modification of a drug.
Amyloid-β (Aβ/Aβ) peptide with a length of 40 or 42 residues is naturally secreted as cleavage product of the amyloid precursor protein, and formation of Aβ aggregates in a patient's brain is a hallmark of Alzheimer's disease (AD). Therefore, disaggregation and disruption provide potential therapeutic approaches to reduce, inhibit, and even reverse Aβ aggregation. The disaggregation/inhibition effect of the inhibitors applies generally to both Aβ and Aβ aggregations. Here we capture the atomic-level details of the interaction between Aβ/Aβ and either natural tanshinone compound TS1 or its derivative TS0, and observe novel results by using molecular dynamics simulations. We observe that the natural TS1 indeed inhibits the monomolecular Aβ (mAβ) aggregation and disaggregates Aβ amyloid fibrils, being in good agreement with the experimental results. TS1 is favorable to stabilize mAβ and even Aβ fibril, playing an opposite role to that in the Aβ counterpart, however. TS0 can inhibit the misfolding of either mAβ or mAβ and disaggregate Aβ fibril but stabilize the Aβ fibril. Using a combination of secondary structural analysis, MM-PBSA binding energy calculations, and radial distribution functions computations, we find that both TS0 and TS1, especially the former, prefer to bind at the charged residues within disordered N-terminus with a scarce positive binding energy and disappear the characteristic C-terminal bend region of Aβ fibril, as well as twist the Aβ fibril seriously. It turns out to destabilize the Aβ fibril and enable the conversion of U-shaped Aβ fibril from the onefold to the twofold morphologies. The N-terminal binding preference helps us to identify N-terminal region as the specific epitope for specific inhibitors/drugs (such as TS0 and analogues), heralding unusual inhibition/disaggregation or stabilization mechanisms, and offering an alternative direction in engineering new inhibitors to treat AD.
In this study, structural and mechanical properties of a series of models of Aβ42 (one- and two-fold) and Aβ40 (two- and three-fold) fibrils have been computed by using all-atom molecular dynamics simulations. Based on calculations of the twist angle (θ) and periodicity (v=360d/θ), oligomers formed by 20, 11, and 13 monomers were found to be the smallest realistic models of three-fold Aβ40 , one-fold Aβ42 , and two-fold Aβ42 fibrils, respectively. Our results predict that the Aβ40 fibrils initially exist in two staggered conformations [STAG(+2) and STAG(+1)] and then undergo a [STAG(+2)→STAG(+1)] transformation in a size-dependent manner. The length of the loop region consisting of the residues 23-29 shrinks with the elongation of both Aβ40 and Aβ42 fibrils. A comparison of the computed potential energy suggests that a two-fold Aβ40 aggregate is more stable than its three-fold counterpart, and that Aβ42 oligomers can exist only in one-fold conformation for aggregates of more than 11 monomers in length. The computed Young's modulus and yield strengths of 50 GPa and 0.95 GPa, respectively, show that these aggregates possess excellent material properties.
A growing body of evidence shows that soluble β-amyloid (Aβ) aggregates, oligomers, and even protofibrils, may be more neurotoxic than fibrils. Here, we employ a coarse grain model to investigate the aggregation of 75mer Aβ oligomers and the salt effect, the cornerstone of fibril evolution. We find that the oligomer morphologies generated by seventy-five monomers or mixed by both fifty monomers and five preset pentameric nuclei are different (spherical vs. bar-/disk-shaped) and are characterize by a full of coil content (former) and >70 % β-turn content (latter), indicating a novel role of the nuclei played in the early aggregation stage. The aggregation for the former oligomer adopts a master-nucleus mechanism, whereas for the latter combination of monomers and pentamers a multi-nuclei one is found. The random salt ions will distribute around the aggregates to form several ion shells as the aggregation develops. A unique two-fold gap between the shells is observed in the system containing 100 mm NaCl, endowing the physiological salt concentration with special implications. Meanwhile, an accurate ion-solute cutoff distance (0.66 nm) is predicted, and recommended to apply to many other aggregated biomolecular systems. The present distribution scenario of ions can be generalized to other aggregated systems, although it is strictly dependent on the identity of a specific aggregate, such as its charge and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.