To increase the measurement range of 3D microscopy, Scheimpflug adjustment, in which the imaging plane is tilted with respect to the telecentric lens plane, is often employed. However, the inclined imaging plane will introduce certain distortion to the captured image, which further affects the accuracy of the 3D reconstruction result. In this paper, a distortion model was derived based on the geometric optics theory. With it, the imaging distortion caused by the Scheimpflug condition can be effectively corrected. Experimental results will be presented to demonstrate the feasibility and validity of the proposed method.
We present a simple and effective compensation method for the off-axis tilt in common-path digital holographic microscopy (CPDHM) by introducing a rotating operation on the hologram. The proposed method mainly requires a digital reference hologram (DRH), which is a rotated version of the original one; it is assumed to be easy to obtain by rotating the specimen's hologram 180°. In this way, the off-axis tilt could be removed by subtracting the retrieved phase of DRH from the retrieved phase of the original hologram, but without any complex spectrum centering judgment, fitting procedures, or prior knowledge of the system. This highly automatic and efficient performance makes our approach available for real-time quantitative phase imaging (QPI), although it limits the field of view (FOV) of the specimen. Some experimental results of microlens array and phase plate demonstrate the feasibility and effectiveness of the proposed method.
We propose a hyperbolic metamaterial-based surface plasmon resonance (HMM-SPR) sensor by composing a few pairs of alternating silver (Ag) and zinc oxide (ZnO) layers. Aiming to achieve the best design for the sensor, the dependence of the sensitivity on the incidence angle, the thickness of the alternating layer and the metal filling fraction are explored comprehensively. We find that the proposed HMM-SPR sensor achieves an average sensitivity of 34,800 nm per refractive index unit (RIU) and a figure of merit (FOM) of 470.7 RIU−1 in the refractive index ranging from 1.33 to 1.34. Both the sensitivity (S) and the FOM show great enhancement when compared to the conventional silver-based SPR sensor (Ag-SPR). The underlying physical reason for the higher performance is analyzed by numerical simulation using the finite element method. The higher sensitivity could be attributed to the enhanced electric field amplitude and the increased penetration depth, which respectively increase the interaction strength and the sensing volume. The proposed HMM-SPR sensor with greatly improved sensitivity and an improved figure of merit is expected to find application in biochemical sensing due to the higher resolution.
We present a single-shot wavelength-multiplexing technique for off-axis digital holography based on a spectral filter. Only a spectral filter is inserted between beam splitter and mirror in reflection off-axis digital holography (RODH). The spectral filter can transmit a well-defined wavelength band of light, while reject other unwanted radiation. By adjusting the filter and mirror separately, the propagation orientation of different reference beams of two wavelengths can be separated, and thus two off- axis holograms with different fringe directions are simultaneously captured by a monochrome camera. The wavefront interference analysis of using a spectral filter is discussed in detail. Our scheme is available for real-time wavelength-multiplexing but requires fewer optical elements and system modifications. Numerical simulation and experiment results of different types of spectral filters demonstrate the validity of proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.