Plant thioglucosidases are the only known S-glycosidases in the large superfamily of glycosidases. These enzymes evolved more recently and are distributed mainly in Brassicales. Thioglucosidase research has focused mainly on the cruciferous crops due to their economic importance and cancer preventive benefits. In this study, we cloned a novel myrosinase gene, CpTGG1, from Carica papaya Linnaeus. and showed that it was expressed in the aboveground tissues in planta.
Background Bacterial blight (BB) caused by Xanthomonas oryzae Pv. oryzae (Xoo) is one of the most serious diseases of rice worldwide. Oryza officinalis Wall ex Watt, harboring abundant genetic diversity and disease resistance features, are important resources of exploring resistance genes with broad-spectrum resistance to BB. However, the molecular mechanisms and genes of BB resistance in O. officinalis have been rarely explored. Results Here, the BB resistance of four different origin O. officinalis populations in Yunnan were identified by seven representative hypervirulent Xoo races, which exhibited different BB resistance among four populations, in which the BB resistance of the Gengma_Lincang population was the strongest. In addition, the pathogenetic ability of seven Xoo races to O. officinalis was different in that the pathogenicity of PXO99 was stronger than that of C5. There were no remarkable differences in leaf microstructures among four O. officinalis populations, revealing the differences in resistance of four O. officinalis to BB are caused by the endogenous resistance genes. Furthermore, our results proved that there were no nine cloned BB resistance genes in four populations but possessed dominant Xa5, dominant Xa13, and recessive xa3/xa26 homologous alleles of xa5, xa13, and Xa3/Xa26 resistance genes. These three homologous genes were isolated and cloned from four populations and named OoXa5, OoXa13, and Ooxa3/xa26. The expression profile revealed that the expression levels of OoXa13 and Ooxa3/xa26 were significantly down-regulated under PXO99 and C5 stress, especially in the Gengma_Lincang population, suggesting the O. officinalis might enhance BB resistance by down-regulating the expression level of OoXa13 and Ooxa3/xa26. Conclusion The BB resistance genes of O. officinalis had its own characteristics by expression pattern and BLAST analysis of OoXa5, OoXa13, and Ooxa3/xa26, which indicated that there might be new genes or molecular mechanism of BB resistance in O. officinalis. Our studies provided a solid foundation and reference for revealing the molecular mechanism of BB resistance in O. officinalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.