Multi-wire welding has received much attention in the machinery industry due to its high efficiency. The aim of this study was to investigate a novel pulse gas metal arc welding (GMAW) that has circular triple-wire electrodes. The effect of the pulse phage angle on arc stability was particularly studied. Research showed that for typical phase angles the arc stability from low to high is 180°, 0°, and 120°, and the arcs are very stable at 120°. The triple-wire welding was used to weld a 9 mm thick Q960E steel, which is typically used for the arm of construction machinery. When the welding heat input was controlled at 1.26–1.56 kJ/mm, the weld zone was dominated by acicular ferrite, and the coarse-grained zone of the heat-affected zone was a mixed structure of lath martensite and lath bainite. The tensile strength of the welded joint reached 85% of the base metal and the impact toughness was above 62 J, which can meet the requirements of construction machinery. This indicates that the triple-wire welding has great potential to achieve efficient and high-quality welding for the construction machinery.
Since heat affected zone (HAZ) is the weak area of welded joints, this article proposes a method to predict the HAZ microstructure and hardness for the triple-wire gas metal arc welding (GMAW) process of Q960E high strength steel. This method combines welding thermal simulation and numerical simulation. The microstructures and hardness of Q960E steel under different cooling rates were obtained by thermal simulation and presented in a simulated HAZ continuous cooling transformation (SH-CCT) diagram. The cooling rate in HAZ were obtained by numerical simulation with ANSYS software for the triple-wire welding of Q960E thick plates. By comparing the cooling rate with the SH-CCT diagram, the microstructure and hardness of the HAZ coarse-grained region were accurately predicted for multiple heat input conditions. Further, an ideal heat input was chosen by checking the prediction results. This prediction method not only helps us to optimize the welding parameters, but also leads to an overall understanding of the process-microstructure-performance for a complex welding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.